12.設(shè)n∈N*,f(n)=5n+2×3n-1+1,通過計算n=1,2,3,4時,f(n)的值,可以猜想f(n)能被最大整數(shù)8整除.

分析 通過計算n=1,2,3,4時,f(n)的值,可以猜想結(jié)論.

解答 解:由題意,f(1)=8,f(2)=32,f(3)=144,f(4)=680,
∴f(n)能被最大整數(shù)8整除.
故答案為:8

點(diǎn)評 本題考查歸納推理,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足Sn>1,6Sn=(an+1)(an+2).
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地區(qū)業(yè)余足球運(yùn)動員共有15000人,其中男運(yùn)動員9000人,女運(yùn)動員6000人,為調(diào)查該地區(qū)業(yè)余足球運(yùn)動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運(yùn)動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運(yùn)動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務(wù)運(yùn)動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
(1)應(yīng)收集多少位女運(yùn)動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運(yùn)動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=4,AC=2$\sqrt{3}$,BD=2,又點(diǎn)E在側(cè)棱PC上,且PC⊥平面BDE.
(1)求線段CE的長;
(2)求點(diǎn)A到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)當(dāng)m=n=1時,求f(x)的最小值;
(2)若f(x)的最小值為2,求證:$\frac{1}{m}$+$\frac{2}{n}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|2a-x|(a∈R).
(1)當(dāng)a=2時,解不等式f(x)>6-|3x-2|;
(2)若對?∈R,f(x)+x>5恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在如圖所示的幾何體中,△ABC是正三角形,且EA⊥平面ABC,DB⊥平面ABC,M是AB的中點(diǎn).
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若AB=2$\sqrt{2}$,AE=1,BD=2,求DE與平面EMC所成角的正切值;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)M到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知關(guān)于x的不等式|x-a|≤b的解集為{x|-1≤x≤3}.
(1)求a,b的值;
(2)若(y-a)(y-b)<0,求z=$\frac{1}{y-a}$+$\frac{1}{b-y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|x-$\sqrt{2}$|-|x+$\sqrt{2}$|最大值為M,
(1)求實(shí)數(shù)M的值;
(2)若?x∈R,f(x)≥t2-(2+$\sqrt{2}$)t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案