(本題滿分16分)
設(shè)函數(shù).
(1)若=1時(shí),函數(shù)取最小值,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,證明對(duì)任意正整數(shù),不等式都成立.
(1)- 4.(2)(3)詳見解析
【解析】
試題分析:(1)利用導(dǎo)數(shù)求開區(qū)間函數(shù)最值,先從導(dǎo)函數(shù)出發(fā),探求極值點(diǎn)即為最值點(diǎn),最后需列表驗(yàn)證:由得(2)函數(shù)在定義域上是單調(diào)函數(shù),即導(dǎo)函數(shù)不變號(hào), ≥0或≤0在( - 1,+ ∞)上恒成立. 即2x2 +2x+b≥0在( - 1,+ ∞)上恒成立或2x2 +2x+b≤0在( - 1,+ ∞)上恒成立,利用變量分離及函數(shù)最值可得:實(shí)數(shù)b的取值范圍是.(3)證明和項(xiàng)不等式,關(guān)鍵分析出和項(xiàng)與通項(xiàng)關(guān)系:即證當(dāng)時(shí),有f(x) <x3.這可利用導(dǎo)數(shù)給予證明
試題解析:(1)由x + 1>0得x> – 1∴f(x)的定義域?yàn)? - 1,+ ∞),
對(duì)x∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函數(shù)f(x)的最小值,故有f/ (1) = 0,
解得b= - 4. 經(jīng)檢驗(yàn),列表(略),合題意;
(2)∵又函數(shù)在定義域上是單調(diào)函數(shù),
∴ ≥0或≤0在( - 1,+ ∞)上恒成立.
若 ≥0,∵x + 1>0,∴2x2 +2x+b≥0在( - 1,+ ∞)上恒成立,
即b≥-2x2 -2x = 恒成立,由此得b≥;
若≤0, ∵x + 1>0, ∴2x2 +2x+b≤0,即b≤- (2x2+2x)恒成立,
因-(2x2+2x) 在( - 1,+ ∞)上沒有最小值,∴不存在實(shí)數(shù)b使f(x) ≤0恒成立.
綜上所述,實(shí)數(shù)b的取值范圍是.
(3)當(dāng)b= - 1時(shí),函數(shù)f(x) = x2 - ln(x+1),令函數(shù)h(x)=f(x) – x3 = x2 – ln(x+1) – x3,
則h/(x) = - 3x2 +2x - ,
∴當(dāng)時(shí),h/(x)<0所以函數(shù)h(x)在上是單調(diào)遞減.
又h(0)=0,∴當(dāng)時(shí),恒有h(x) <h(0)=0,即x2 – ln(x+1) <x3恒成立.
故當(dāng)時(shí),有f(x) <x3..
∵取則有
∴,故結(jié)論成立。
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)性質(zhì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河南省信陽市畢業(yè)班第二次調(diào)研檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,則的大小關(guān)系是( )
(A). (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省南昌市高三上學(xué)期第四次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知滿足約束條件若的最小值為,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開學(xué)聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,點(diǎn)分別是橢圓的上頂點(diǎn)和右焦點(diǎn),直線與橢圓交于另一點(diǎn),過中心作直線的平行線交橢圓于兩點(diǎn),若則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開學(xué)聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等比數(shù)列中,各項(xiàng)都是正數(shù),且成等差數(shù)列,則等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開學(xué)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)實(shí)數(shù)a,x,y,滿足則xy的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宿遷市高三下學(xué)期期初開學(xué)聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量a,b,滿足|a|=1,| b |=,a+b=(,1),則向量a+b與向量a-b的夾角是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省名校高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
不等式的解集是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com