7.已知直線l:x-y+3=0與圓C:(x+1)2+y2=2,則直線l與圓C的位置關(guān)系為相切.

分析 求得圓心到直線l:x-y+3=0的距離等于半徑,可得直線和圓相切.

解答 解:由于圓心(-1,0)到直線l:x-y+3=0的距離為d=$\frac{|-1+3|}{\sqrt{2}}$=$\sqrt{2}$(半徑),
故直線和圓相切,
故答案為:相切.

點評 本題主要考查直線和圓的位置關(guān)系的判定方法,點到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直角三角形ABC(AB>AC)的斜邊BC的垂直平分線m交直角邊AB于點P,兩條直角邊的長度之和為6,設(shè)AB=x,求△ACP面積的最大值和相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是BB1,DD1的中點.
( I)證明:平面AED∥平面B1FC1;
( II)在AE上求一點M,使得A1M⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+m,x<1}\\{x-lnx,x≥1}\end{array}\right.$在R上單調(diào)遞增,則實數(shù)m的取值范圍是($-∞,\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i是虛數(shù)單位,復(fù)數(shù)z=${({\frac{3-i}{1+i}})^2}$,則復(fù)數(shù)z的共軛復(fù)數(shù)表示的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是遞增等差數(shù)列,a2,a4是方程x2-5x+6=0的根,
(Ⅰ)  求數(shù)列{an}的通項公式;
(Ⅱ)若${b_n}=\frac{a_n}{{{2^{n-1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax-1)9=a0+a1x+a2x2+…+a9x9,且a0+a1+a2+…+a9=0,則a3=84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在矩陣A的變換下,坐標(biāo)平面上的點的橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A-1;
(2)求圓x2+y2=4在矩陣A-1的變換下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題:“?x>0,x2-x≥0”的否定形式是( 。
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

查看答案和解析>>

同步練習(xí)冊答案