分析 分別計算當n=k和n=k+1時左側(cè)最后一項的分母即左側(cè)的項數(shù)即可得出答案.
解答 解:當n=k時,不等式左側(cè)為1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$,
當n=k+1時,不等式左側(cè)為1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
不等式左邊增加的項數(shù)是(2k+1-1)-(2k-1)=2k.
故答案為:2k.
點評 本題考查數(shù)學歸納法,考查觀察、推理與運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1≤x≤2} | B. | {x|x≥1} | C. | {x|1<x≤2} | D. | {x|2≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | [-1,0] | C. | [0,1] | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com