19.已知第二象限的角α的終邊與單位圓的交點(diǎn)$P(m,\frac{{\sqrt{3}}}{2})$,則tanα=-$\sqrt{3}$.

分析 先求得m的值,再利用任意角的三角函數(shù)的定義,求得tanα的值.

解答 解:∵第二象限的角α的終邊與單位圓的交點(diǎn)$P(m,\frac{{\sqrt{3}}}{2})$,∴m<0,且$\sqrt{{m}^{2}+\frac{3}{4}}$=1,
求得m=-$\frac{1}{2}$,則tanα=$\frac{y}{x}$=$\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}$=-$\sqrt{3}$,
故答案為:$-\sqrt{3}$.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}的首項(xiàng)為a,公差為1,數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{{a}_{n}+1}$.若對任意n∈N*,bn≤b6,則實(shí)數(shù)a的取值范圍是( 。
A.(-8,-6)B.(-7,-6)C.(-6,-5)D.(6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1,2},B={x|1<x<4},則集合A∩B=( 。
A.{2}B.{1,2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知α為銳角,且tanα=$\frac{1}{3}$.
(Ⅰ)求tan(α+$\frac{π}{4}$)的值;
(Ⅱ)求$\frac{5sinα+cosα}{4sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos585°的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等比數(shù)列{an}中,a2+a4=20,a3+a5=40,則數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過點(diǎn)(0,3)且與直線2x+y-5=0垂直的直線方程為(  )
A.2x+y-3=0B.x+2y-6=0C.x-2y+6=0D.2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,E,M分別是AD,PD中點(diǎn),PE⊥BE,PA=PD=AD=2,AB=$\sqrt{2}$.
(Ⅰ)求證:PB∥平面MAC;
(Ⅱ)求證:PE⊥平面ABCD;
(Ⅲ)求證:平面MAC⊥平面PBE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的圖象關(guān)于直線對稱,則的值為( )

A.1 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案