15.已知圓C:x2+y2=4,則過圓上點(diǎn)$(1,\sqrt{3})$的切線方程是$x+\sqrt{3}y-4=0$.

分析 直接利用圓上的點(diǎn)的切線方程,求出即可.

解答 解:因?yàn)椋?,$\sqrt{3}$)是圓x2+y2=4上的點(diǎn),
所以它的切線方程為:x+$\sqrt{3}$y=4,
即$x+\sqrt{3}y-4=0$.
故答案為$x+\sqrt{3}y-4=0$.

點(diǎn)評(píng) 本題考查圓的切線方程,判斷點(diǎn)在圓上是解題的關(guān)鍵.圓上的點(diǎn)(x0,y0)的切線方程為:xx0+yy0=R2,值得注意圓的切線方程的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,底面ABCD是棱長為2的正方形,側(cè)棱$SD=2,SA=2\sqrt{2}$,∠SDC=120°.
(Ⅰ)求證:AD⊥面SDC;
(Ⅱ)求棱SB與面SDC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{sinx}{|sinx|}$+$\frac{|cosx|}{cosx}$+$\frac{tanx}{|tanx|}$的值域是( 。
A.{1}B.{1,3}C.{-1}D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求適合下列條件的圓錐曲線方程:
(1)長軸長是短軸長的3倍,經(jīng)過點(diǎn)(3,0)的橢圓標(biāo)準(zhǔn)方程.
(2)已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線與其平行線x=2的距離為3,求拋物線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x~N(4,1)且f(x<3)=0.0187,則f(x<5)=0.9813.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用五點(diǎn)作圖法畫出y=sin(x-$\frac{π}{6}$)在一個(gè)周期上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,⊙O在平面α內(nèi),AB是⊙O的直徑,PA⊥平面α,C為圓周上不同于A、B的任意一點(diǎn),M,N,Q分別是PA,PC,PB的中點(diǎn).
(1)求證:平面MNQ∥平面α;
(2)若PA=AB=2,AC=CB求三棱錐A-CPB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.方程${4^{{x^2}+1}}=16$的解為{-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線y2=2px(p>0)經(jīng)過點(diǎn)A(1,$\frac{1}{2}$),則它的準(zhǔn)線方程為( 。
A.x=-$\frac{1}{32}$B.x=-$\frac{1}{16}$C.y=-$\frac{1}{32}$D.y=-$\frac{1}{16}$

查看答案和解析>>

同步練習(xí)冊(cè)答案