【題目】為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:

表1:男、女生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80]

男生人數(shù)

5

25

30

25

15

女生人數(shù)

10

20

40

20

10

(Ⅰ)若該中學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);

(Ⅱ)完成下表,并回答能否有90%的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

女生

合計

附:公式,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

【答案】(Ⅰ)225;(Ⅱ)沒有的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”.

【解析】分析:(1)根據(jù)樣本比例=總體比例,再計算總體人數(shù)

(2)先填表,再利用卡方公式計算

詳解:(Ⅰ)設(shè)估計上網(wǎng)時間不少于分鐘的人數(shù),

依據(jù)題意有,解得:,

所以估計其中上網(wǎng)時間不少于分鐘的人數(shù)是225人.

(Ⅱ)根據(jù)題目所給數(shù)據(jù)得到如下列聯(lián)表:

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

60

40

100

女生

70

30

100

合計

130

70

200

其中,

因此,沒有的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,的值域是,則實數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設(shè)備,每噸產(chǎn)品除塵費用為萬元,除塵后當(dāng)日產(chǎn)量時,總成本

1)求的值;

2)若每噸產(chǎn)品出廠價為48萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,焦點到相應(yīng)準(zhǔn)線的距離為,,分別為橢圓的左頂點和下頂點,為橢圓上位于第一象限內(nèi)的一點,軸于點,軸于點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,求的值;

(3)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點都在上,且點,依逆時針次序排列,點的極坐標(biāo)為.

(1)求點的直角坐標(biāo);

(2)設(shè)上任意一點,求點到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集記為D,命題p:(x,y)∈D,x+2y≥5,命題q:(x,y)∈D,2x﹣y<2,則下列命題為真命題的是(
A.p
B.q
C.p∨(q)
D.(p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接夏季旅游旺季的到來,少林寺單獨設(shè)置了一個專門安排游客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準(zhǔn)備的一些食物有些月份剩余不少,浪費很嚴重,為了控制經(jīng)營成本,減少浪費,就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住客棧的游客人數(shù)基本相同;

②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;

③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.

(1)試用一個正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)y與月x份之間的關(guān)系;

(2)請問哪幾個月份要準(zhǔn)備400份以上的食物?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的左、右焦點分別為F1、F2 , A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S =λS ,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點,,曲線上任意一點滿足

(1)的方程;

(2)動點 在曲線上,是曲線處的切線.問:是否存在定點使得都相交,交點分別為,且的面積之比為常數(shù)?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案