觀察數(shù)列:

①1,-1,1,-1…;

②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;

(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果________,對于一切正整數(shù)n都滿足________成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;

(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N+,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;

(3)若數(shù)列{an}的首項,且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

答案:
解析:

  解:(1)存在正整數(shù);

  (2)證明:由

  

  所以數(shù)列{an}是以T=6為周期的周期數(shù)列

  由

  于是

  又

  所以,

  (3)當p=0時,{an}是周期數(shù)列,因為此時an=0(n∈N*)為常數(shù)列,所以對任意給定的正整數(shù)T及任意正整數(shù)n,都有an+T=an,符合周期數(shù)列的定義.

  當是遞增數(shù)列,不是周期數(shù)列.

  下面用數(shù)學歸納法進行證明:

 、佼

  所以

  且

  所以

 、诩僭O(shè)當n=k時,結(jié)論成立,即

  則

  所以當n=k+1時,結(jié)論也成立.

  根據(jù)①、②可知,{an}是遞增數(shù)列,不是周期數(shù)列.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

觀察數(shù)列:1,2,2,3,3,3,4,4,4,4,…,則第20項是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海一模)觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果
存在正整數(shù)T
存在正整數(shù)T
,對于一切正整數(shù)n都滿足
an+T=an
an+T=an
成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008
(3)若數(shù)列{an}的首項a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)期中數(shù)學模擬試卷(二)(解析版) 題型:解答題

觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果______,對于一切正整數(shù)n都滿足______成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
(3)若數(shù)列{an}的首項a1=p,p∈[0,),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江市高二(下)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

觀察數(shù)列:1,2,2,3,3,3,4,4,4,4,…,則第20項是( )
A.6
B.20
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年數(shù)學寒假作業(yè)(05)(解析版) 題型:解答題

觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果______,對于一切正整數(shù)n都滿足______成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
(3)若數(shù)列{an}的首項a1=p,p∈[0,),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案