7.拋物線y2=2px(p>0)上一點M到焦點的距離是a(a>$\frac{p}{2}$),則點M到準(zhǔn)線的距離是a.

分析 根據(jù)拋物線上任一點到焦點的距離與到準(zhǔn)線的距離是相等即可得到答案.

解答 解:根據(jù)拋物線上任一點到焦點的距離與到準(zhǔn)線的距離是相等的,
由拋物線y2=2px(p>0)上一點M到焦點的距離是a(a>$\frac{p}{2}$),
則點M到準(zhǔn)線的距離是a,
故答案為:a.

點評 本題考查拋物線的簡單性質(zhì),活用拋物線的定義是解決拋物線問題最基本的方法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.比較lg2,(lg2)2,lg(lg2)的大小,其中最大的是lg2,最小的是lg(lg2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,1),則2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為( 。
A.(1,5)B.(-1,4)C.(0,3)D.(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow$=(-2,1),$\overrightarrow{a}$•$\overrightarrow$=5,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}\right.$(t是參數(shù)),以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程是ρ=4sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)已知點P的直角坐標(biāo)為(2,1)直線l與圓C交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某工廠生產(chǎn)某種產(chǎn)品,用傳送帶將產(chǎn)品送至下一工序,質(zhì)量員每隔10分鐘在傳送帶某一位置取一件產(chǎn)品進行檢驗,這種抽樣的方法為( 。
A.分層抽樣B.簡單隨機抽樣C.系統(tǒng)抽樣D.其它抽樣方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的右焦點為F2,O為坐標(biāo)原點,M為y軸上一點,點A是直線MF2與橢圓C的一個交點,且|OA|=|OF2|=2|OM|,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校為了了解高三學(xué)生日平均睡眠時間(單位:h),隨機選擇了50位學(xué)生進行調(diào)查.下表是這50位同學(xué)睡眠時間的頻率分布表:(1)根據(jù)所給數(shù)據(jù),求眾數(shù)和中位數(shù);(2)現(xiàn)根據(jù)如下算法流程圖用計算機統(tǒng)計平均睡眠時間,則判斷框①中應(yīng)填入什么條件?(3)若從第1組和第5組中隨機取出2個數(shù)據(jù),求相應(yīng)的兩個同學(xué)的睡眠時間差的絕對值大于1小時的概率
組別(i)睡眠時間組中值(Zi頻數(shù)頻率(Pi
1[4.5,5.5)520.04
2[5.5,6.5)660.12
3[6.5,7.5)7200.40
4[7.5,8.5)8180.36
5[8.5,9.5)930.06
6[9.5,10.5)1010.02

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,三邊長分別為a=2,b=3,c=4,則$\frac{sin2A}{sinB}$=$\frac{7}{6}$.

查看答案和解析>>

同步練習(xí)冊答案