12.執(zhí)行如圖所示的程序框圖,如果輸入a=3,b=2,則輸出的a的值為( 。
A.2B.7C.9D.13

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累加a值,并判斷滿足a>8時(shí)輸出a的值.

解答 解:程序在運(yùn)行過(guò)程中各變量的聚會(huì)如下表示:
是否繼續(xù)循環(huán)   a   b
循環(huán)前/3  2
第一圈         否       5   2
第二圈         否       7   2
第三圈         否       9   2
第四圈         是
故最終輸出的a值為9.
故選:C.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫(xiě)程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.用長(zhǎng)為36m的鋼條圍成一個(gè)長(zhǎng)方體形狀的框架,要求長(zhǎng)方體的長(zhǎng)與寬之比為2:1,問(wèn)該長(zhǎng)方體的長(zhǎng)、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如果α的終邊過(guò)點(diǎn)(2sin30°,-2cos30°),那么sinα=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等比數(shù)列a1+a4=18,a2a3=32,則公比q的值為(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{2}$或2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 (a+b+c)(a+b-c)=3ab
(1)求角C;
(2)若邊c=2,S△ABC=$\frac{{\sqrt{3}}}{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=$\frac{x^2}{2}$-alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個(gè)零點(diǎn),試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.橢圓$\frac{x^2}{12}+\frac{y^2}{3}=1$的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上,且點(diǎn)P的橫坐標(biāo)為3,則|PF1|是|PF2|的( 。
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.奇臺(tái)一中高一年級(jí)數(shù)學(xué)老師這學(xué)期分別用A、B兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)班(人數(shù)均為60人,入學(xué)時(shí)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同,勤奮程度和自覺(jué)性都一樣).現(xiàn)隨機(jī)收取甲、乙兩班各20名學(xué)生的數(shù)學(xué)期末考試成績(jī),得到莖葉圖:

學(xué)校規(guī)定:成績(jī)不低于85分的為優(yōu)秀.
請(qǐng)?zhí)顚?xiě)下面的2×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)?”
甲班乙班合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.?dāng)?shù)列{an}中,a1=1,對(duì)所有的n≥2都有a1a2a3…an=n2,則a3=$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案