分析:(Ⅰ)先求得f(x)的定義域?yàn)椋?,+∞),f′(x)=
,有-ax-1<0,從而當(dāng)x∈(0,1)時(shí),f′(x)>0;當(dāng)x∈(1,+∞)時(shí),f′(x)<0,即可得到f(x)的單調(diào)區(qū)間;
(Ⅱ)①當(dāng)a>0時(shí),要使f(x)在(0,+∞)上有兩個(gè)相異零點(diǎn),則只需f(1)>0,解得a>3;當(dāng)-1<a<0時(shí),要使得f(x)在(0,+∞)上有兩個(gè)相異零點(diǎn),而關(guān)于a的方程無解,故實(shí)數(shù)a的范圍為(3,+∞).
解答:
解:(Ⅰ)由題意可知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
且f′(x)=
-ax+(a-1)=
=
.
由于a>0,x>0,故-ax-1<0
從而當(dāng)x∈(0,1)時(shí),f′(x)>0;當(dāng)x∈(1,+∞)時(shí),f′(x)<0;
故f(x)在(0,1]上單調(diào)遞增,在[1,+∞)上單調(diào)遞減.
從而f(x)的單調(diào)遞增區(qū)間為(0,1],單調(diào)遞減區(qū)間為[1,+∞).
(Ⅱ)f′(x)=
,x>0,
①當(dāng)a>0時(shí),由(Ⅰ)得,f(x)在(0,1]上單調(diào)遞增,在[1,+∞)上為減函數(shù),
考慮到當(dāng)x趨于0時(shí),f(x)趨于-∞,f(2)=ln2-2-
<0,
故要使f(x)在(0,+∞)上有兩個(gè)相異零點(diǎn),則只需f(1)>0,
即f(1)=
=
>0,
解得a>3.
②當(dāng)-1<a<0時(shí),
故當(dāng)x∈(0,1]∪[-
,+∞)時(shí)f′(x)≥0,當(dāng)x∈[1,-
]時(shí)f′(x)≤0,
故f(x)在(0,1]上為增函數(shù),在[1,-
]上為減函數(shù),在[-
,+∞)上為增函數(shù).
考慮到當(dāng)x趨于0時(shí),f(x)趨于-∞,當(dāng)x趨于+∞時(shí),f(x)趨于+∞,
f(1)=
=
>0,
從而f(x)在(0,1)內(nèi)有且僅有一個(gè)零點(diǎn),
要使得f(x)在(0,+∞)上有兩個(gè)相異零點(diǎn),則f(-
)=ln(-
)-
-1=0,又-
∈(1,+∞),
故ln(-
)-
-1>ln1+1-1=0,從而上述關(guān)于a的方程無解.
綜上,實(shí)數(shù)a的范圍為(3,+∞).