已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);

(2)記,若對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(1)∴的極小值點(diǎn)為:;無極大值點(diǎn).(2).

【解析】本題為三次函數(shù),利用求導(dǎo)的方法研究函數(shù)的極值、單調(diào)性和函數(shù)的最值,函數(shù)在區(qū)間上為單調(diào)函數(shù),則導(dǎo)函數(shù)在該區(qū)間上的符號(hào)確定,從而轉(zhuǎn)為不等式恒成立,再轉(zhuǎn)為函數(shù)研究最值.運(yùn)用函數(shù)與方程的思想,化歸思想和分類討論的思想解答問題

(1),定義域      ---------1

             -----------1

,得 

x

f '(x)

-

0

+

f(x)

遞減

極小值

遞增

的極小值點(diǎn)為:;無極大值點(diǎn).(注:不注明極小值點(diǎn)不扣分)

(2)由題得,對(duì)任意,恒有,

.則,其中  

 

,∴

當(dāng)時(shí),恒有,所以,函數(shù)單調(diào)遞增,,成立

當(dāng)時(shí),令,則

當(dāng)時(shí),,單調(diào)遞減;      ---------1

當(dāng)時(shí),,單調(diào)遞增;    --------1

為函數(shù)的最小值,又所以不成立

綜上所述,.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),其中    

(1)      當(dāng)滿足什么條件時(shí),取得極值?

(2)      已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當(dāng)a=3時(shí),求fx)的零點(diǎn);

(2)求函數(shù)yf (x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),.

(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;

(2)若,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),

(1)當(dāng)時(shí),證明:對(duì),;

(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;

(3)數(shù)列,若存在常數(shù),都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) ,

   (1)當(dāng)  時(shí),求函數(shù)  的最小值;

   (2)當(dāng)  時(shí),討論函數(shù)  的單調(diào)性;

   (3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案