【題目】如圖是某算法的程序框圖,則程序運行后輸出的結(jié)果是( )
A.2
B.3
C.4
D.5
【答案】B
【解析】解:第一次循環(huán),sin >sin0,即1>0成立,a=1,T=1,k=2,k<6成立,
第二次循環(huán),sinπ>sin ,即0>1不成立,a=0,T=1,k=3,k<6成立,
第三次循環(huán),sin >sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,
第四次循環(huán),sin2π>sin ,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,
第五次循環(huán),sin >sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,輸出T=3,
故選:B
【考點精析】認(rèn)真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 時,函數(shù)是增函數(shù),因為,所以是增函數(shù),這種推理是合情合理.
B. 在平面中,對于三條不同的直線, , ,若, ,將此結(jié)論放在空間中也是如此,這種推理是演繹推理.
C. 命題: , 的否定是: , .
D. 若分類變量與的隨機(jī)變量的觀察值越小,則兩個分類變量有關(guān)系的把握性越小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
(1)若D是BC的中點,求證:AD⊥CC1;
(2)過側(cè)面BB1C1C的對角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為F1, F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M.
(1)求點M的軌跡的方程;
(2)設(shè)與x軸交于點Q, 上不同于點Q的兩點R、S,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).
(1)證明:C,E,F(xiàn),D四點共圓;
(2)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,畫出函數(shù)的大致圖像;
(2)當(dāng)時,根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的右焦點為,不垂直軸且不過點的直線與橢圓相交于兩點.
(1)若直線經(jīng)過點,則直線、的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(2)如果,原點到直線的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間上的最大值和最小值及相應(yīng)的x值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是C: (a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com