【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

【答案】A
【解析】解:在等差數(shù)列中,s10 , s20﹣s10 , s30﹣s20成等差數(shù)列
=x+x2| =3+9=12,
S20=17,
∴2(17﹣12)=12+s30﹣17
∴s30=15
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用定積分的概念和等差數(shù)列的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限;在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時(shí),存在x0>0,使對(duì)于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實(shí)數(shù)m使對(duì)任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,a,b,c為角A,B,C所對(duì)的邊,且

(1)求cosA的值;

(2)若△ABC的面積為,并且邊AB上的中線(xiàn)CM的長(zhǎng)為,求b,c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE是⊙O的直徑,過(guò)⊙O上的點(diǎn)C作直線(xiàn)AB,交ED的延長(zhǎng)線(xiàn)于點(diǎn)B,且OA=OB,CA=CB,連結(jié)EC,CD.

(1)求證:直線(xiàn)AB是⊙O的切線(xiàn);
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017101日,為慶祝中華人民共和國(guó)成立68周年,來(lái)自北京大學(xué)和清華大學(xué)的6名大學(xué)生志愿者被隨機(jī)平均分配到天安門(mén)廣場(chǎng)運(yùn)送礦泉水、打掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有1名北京大學(xué)志愿者的概率是.

(1)求打掃衛(wèi)生崗位恰好有北京大學(xué)、清華大學(xué)志愿者各1名的概率;

(2)設(shè)隨機(jī)變量ξ為在維持秩序崗位服務(wù)的北京大學(xué)志愿者的人數(shù),求ξ的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:

(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;

(2)(a0+a2+a4)2-(a1+a2+a3)2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來(lái)自數(shù)學(xué)學(xué)院,其余7名同學(xué)來(lái)自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院.現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).

1)求選出的3名同學(xué)是來(lái)自互不相同學(xué)院的概率;

2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱(chēng)集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a>0,且a≠1).

(1)討論f(x)的奇偶性;

(2)a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案