已知矩陣,,計算

解析試題分析:這類矩陣的計算,一般是求出矩陣的特征值,對應的特征向量,同時把表示出來,再利用矩陣運算公式
進行計算.
試題解析:矩陣M的特征多項式為
,對應的一個特征向量分別為,. 5分
,得
.     10分
考點:特征值、特征向量與矩陣的運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

[選修4-2:矩陣與變換]
已知矩陣,向量,是實數(shù),若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知矩陣M=有特征向量,,相應的特征值為λ1,λ2.
(1)求矩陣M的逆矩陣M-1及λ1,λ2;
(2)對任意向量,求M100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

M,N,試求曲線y=sinx在矩陣MN變換下的曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知2×2矩陣M=有特征值λ=-1及對應的一個特征向量e1=.
(1)求矩陣M.
(2)設曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知2×2矩陣M=,矩陣M對應的變換將點(2,1)變換成點(4,-1),求矩陣M將圓x2+y2=1變換后的曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若圓在矩陣對應的變換下變成橢圓求矩陣的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若曲線C:x2+4xy+2y2=1在矩陣M=對應的線性變換作用下變成曲線C':x2-2y2=1.
(1)求a,b的值.
(2)求M的逆矩陣M-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

運用旋轉矩陣,求直線2x+y-1=0繞原點逆時針旋轉45°后所得的直線方程.

查看答案和解析>>

同步練習冊答案