【題目】已知函數(shù).
(Ⅰ)若滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的最小值;
(Ⅲ)當(dāng)時(shí),試比較與的大。
【答案】(1);(2);(3)略
【解析】試題分析:(1)依題意, ,構(gòu)造函數(shù),利用導(dǎo)數(shù)可求得,從而可求得實(shí)數(shù)的取值范圍;
(2),令可求得a的范圍,得,設(shè)對(duì)討論可求得實(shí)數(shù)的取值范圍;
(3)由(1)知在上單調(diào)遞減,從而可得, 時(shí), 即,進(jìn)一步分析即可得到
試題解析:1)由原式
令,可得在上遞減,
在上遞增,所以,即,
(2),令,得,設(shè),當(dāng)時(shí), ,
∴當(dāng)時(shí),函數(shù)在單調(diào)遞增,
若, ,
,
∴時(shí)取得極小值即最小值,
而當(dāng)時(shí), ,
必有根, 必有極值,在定義域上不單調(diào),
∴,
(3)由(1)知在上單調(diào)遞減,
∴時(shí), 即,
而時(shí), ,∴,
∴,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=x3+x(x∈R),當(dāng) 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,1)
B.(﹣∞,0)
C.(﹣∞, )
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x (萬(wàn)元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y (萬(wàn)元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ﹣ ,據(jù)此估計(jì),該社區(qū)一戶收入為15萬(wàn)元家庭年支出為( )
A.11.4萬(wàn)元
B.11.8萬(wàn)元
C.12.0萬(wàn)元
D.12.2萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與 的大。
(3)證明:x>0時(shí),xexlnx+ex>x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( )
A.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍,然后再向左平移 個(gè)單位
B.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的2倍,然后再向右平移 個(gè)單位
C.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的 ,然后再向右平移 個(gè)單位
D.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的 ,然后再向左平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某個(gè)品牌的U盤進(jìn)行壽命追蹤調(diào)查,所得情況如下面頻率分布直方圖所示.
(1)圖中縱坐標(biāo)y0處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原y0;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取20個(gè)U盤,壽命為1030萬(wàn)次之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在1030萬(wàn)次之間的元件中任取2個(gè)元件,求事件“恰好有一個(gè)壽命為1020萬(wàn)次,一個(gè)壽命為2030萬(wàn)次”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,是的中點(diǎn),與交于點(diǎn),在線段上,且.
(Ⅰ)求證:平面;
(Ⅱ)若,,,三棱錐的體積為,求三棱柱的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com