15.計(jì)算sin46°•cos16°-cos314°•sin16°=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

分析 利用誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計(jì)算求值.

解答 解:sin46°•cos16°-cos314°•sin16°=sin46°•cos16°-cos46°•sin16°
=$sin(46°-16°)=sin30°=\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2m+1,3,m-1),$\overrightarrow$=(2,m,2),且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m的值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知經(jīng)過原點(diǎn)的圓C的圓心在x軸正半軸上,且圓心到直線3x+4y+1=0的距離為2.
(1)求圓C的方程;
(2)若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{3}}{2}$,且左右焦點(diǎn)為F1,F(xiàn)2,已知點(diǎn)P在圓C上且使∠F1PF2為鈍角,求點(diǎn)P橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{m}$=(λ,1),$\overrightarrow{n}$=(λ+1,2),若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則λ=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,從氣球A上測(cè)得正前方的河流的兩岸B,C的俯角分別為60o,30°,此時(shí)氣球的高是60m,則河流的寬度BC等于(  )
A.$30\sqrt{3}$B.$30({\sqrt{3}-1})$C.$40\sqrt{3}$D.$40({\sqrt{3}-1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=(ex+ae-x)sinx為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若ab>0,則a|a|>b|b|是a>b的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(x+3)(1-$\frac{2}{\sqrt{x}}$)5的展開式中常數(shù)項(xiàng)為43.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合H={1,2,3,4},集合K={1,1.5,2,0,-1,-2},則H∩K為( 。
A.{1,2}B.{1,2,0,-1}C.(-1,2]D.{1.5,0}

查看答案和解析>>

同步練習(xí)冊(cè)答案