已知矩形的周長為36,矩形繞它的一條邊旋轉形成一個圓柱,要使旋轉形成的圓柱的側面積最大,則矩形的長為______.
設矩形的長是a,寬各為b,
∵矩形的周長為36,
∴2(a+b)=36,解得a+b=18
∵旋轉形成的圓柱側面積是:2πab,
∴要求側面積最大,即求ab的最大值,
ab=a(18-a)=18a-a2
=-(a-9)2+81,∴
當a=9時ab有最大值81,
∴b=9
即:矩形的長,寬都為9時,旋轉形成的圓柱側面積最大.
故答案為:9.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=AC=1,∠ACD=90°,將它沿對角線AC折起,使AB與CD成60°角,則此時B、D的距離是( 。
A.2或
3
B.2或
2
C.2D.1或
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E為垂足,則PE的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:已知P是正方形ABCD所在平面外一點,點P在平面ABCD內的射影O是正方形的中心,PO=OD=a,E是PD的中點
(1)求證:PD⊥平面AEC
(2)求直線BP到平面AEC的距離
(3)求直線BC與平面AEC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

二面角α-l-β為60°,A、B是棱l上的兩點,AC、BD分別在半平面α、β內,
AC⊥l,BD⊥l,且AB=AC=a,BD=2a,則CD的長為( 。
A.2aB.
5
a
C.aD.
3
a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,若正方體ABCD-A1B1C1D1的棱長為1,則點C到平面A1BD的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,長方體ABCD-A1B1C1D1中,AB=3,BC=2,BB1=4,E為AD的中點,點P在線段C1E上,則點P到直線BB1的距離的最小值為(  )
A.2B.
10
C.
3
10
5
D.
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線l是平面α的斜線,那么在平面α內( 。
A.不存在與l平行的直線
B.不存在與l垂直的直線
C.與l垂直的直線只有一條
D.與l平行的直線有無窮多條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.求證:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

同步練習冊答案