【題目】對于無窮數(shù)列,“若存在,必有”,則稱數(shù)列具有性質(zhì).

(1)若數(shù)列滿足,判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?

(2)對于無窮數(shù)列,設(shè),求證:若數(shù)列具有性質(zhì),則必為有限集;

(3)已知是各項均為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),是否存在正整數(shù),,使得,,,…,,…成等差數(shù)列.若存在,請加以證明;若不存在,說明理由.

【答案】1)見解析;

2)見解析;

3)見解析.

【解析】

1)根據(jù)題中所給的條件,利用定義判斷可得數(shù)列不具有性質(zhì),具有性質(zhì)

2)根據(jù)數(shù)列具有性質(zhì),得到數(shù)列元素個數(shù),從而證得結(jié)果;

(3)依題意,數(shù)列是各項為正數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),可證得存在整數(shù),使得是等差數(shù)列.

1)因為,

,但,所以數(shù)列不具有性質(zhì),

同理可得數(shù)列具有性質(zhì);

2)因為數(shù)列具有性質(zhì),

所以一定存在一組最小的且,滿足,即,

由性質(zhì)的含義可得,,,,

所以數(shù)列中,從第項開始的各項呈現(xiàn)周期性規(guī)律:

為一個周期中的各項,

所以數(shù)列中最多有個不同的項,

所以最多有個元素,即為有限集;

3)因為數(shù)列具有性質(zhì),又具有性質(zhì),

所以存在,使得,

其中分別是滿足上述關(guān)系式的最小的正整數(shù),

由性質(zhì)的含義可得,

,則取,可得

,則取,可得,

,則對于,

,顯然

由性質(zhì)的含義可得:,

所以

,

所以

滿足的最小的正整數(shù),

所以,

所以,

所以,

,所以,若是偶數(shù),則,

是奇數(shù),

,

所以,,

所以是公差為1的等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為直徑的上運動,平面,且,點分別是、的中點.

(1)求證:

(2)若,求點平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

(2)利用分層抽樣從持“不贊成”意見家長中抽取5名參加學(xué)校交流活動,從中選派2名家長發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國國際智能產(chǎn)業(yè)博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國國際智博會服務(wù)的志愿者.

(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學(xué)的概率(結(jié)果用分數(shù)表示)

(2)若“法醫(yī)”小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用表示抽出志愿者來自重慶醫(yī)科大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實常數(shù),函數(shù)

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)設(shè),不等式的解集為,不等式的解集為,當(dāng)時,是否存在正整數(shù),使得成立.若存在,試找出所有的m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四人進行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

同步練習(xí)冊答案