17.設x取實數(shù),則f(x)與g(x)表示同一個函數(shù)的是(  )
A.f(x)=x,$g(x)=\sqrt{x^2}$B.f(x)=x與g(x)=$\root{3}{x^3}$
C.f(x)=1,g(x)=x0D.$f(x)=\frac{{{x^2}-9}}{x+3}$,g(x)=x-3

分析 根據(jù)確定函數(shù)的三要素判斷每組函數(shù)是否為同一函數(shù),即需要確定每組函數(shù)的定義域、對應關系、值域是否相同,也可只判斷前兩項是否相同即可確定這兩個函數(shù)是否為同一個函數(shù).

解答 解:A組中兩函數(shù)的定義域相同,對應關系不同,g(x)=|x|,故不是同一函數(shù);
B組中兩函數(shù)的定義域均為R,對應關系化簡為f(x)=g(x)=x,故是同一函數(shù);
C組中兩函數(shù)的定義域不同,f(x)的定義域為R,g(x)的定義域為{x|x≠0},故不是同一函數(shù);
D組中兩函數(shù)的定義域不同,g(x)的定義域為R,f(x)的定義域為{x|x≠-3},故不是同一函數(shù).
故選:B.

點評 本題考查了函數(shù)的定義域和解析式的應用問題,是對函數(shù)三要素的認識和把握,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.由曲線y=x2與直線y=4x所圍成的平面圖形的面積是$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|.若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f($\frac{a}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若數(shù)列{an}滿足an=n,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,則數(shù)列{bn}的前n項和Sn是(  )
A.$\frac{n}{n+1}$B.$\frac{2n}{n+1}$C.$\frac{n-1}{n}$D.$\frac{2n-2}{n}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.(以下請用列舉法表示)
(1)求A集合與B集合
(2)求A∪(B∩C)
(3)求(∁UB)∪(∁UC).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓C過點A(1,-1),B(-1,1),且圓心在直線x+y-2=0.
(1)求圓C的方程;
(2)求過點N(3,2)且與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知x>0,y>0,2xy=x+4y+a
(1)當a=6時,求xy的最小值;
(2)當a=0時,求$x+y+\frac{2}{x}+\frac{1}{2y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+Sn=2n+1.
(1)求證:數(shù)列{an-2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{n(an-2)}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=-x3,x∈RB.y=x2,x∈RC.y=x,x∈RD.$y={({\frac{1}{2}})^x}$,x∈R

查看答案和解析>>

同步練習冊答案