計(jì)算:
25
9
-(
8
27
 
1
3
-(π+e)0+(
1
4
 -
1
2
;
②2lg5+lg4+ln
e
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)和對數(shù)的運(yùn)算性質(zhì)和運(yùn)算法則求解.
解答: 解:①
25
9
-(
8
27
 
1
3
-(π+e)0+(
1
4
 -
1
2

=
5
3
-
2
3
-1+2
=2.
②2lg5+lg4+ln
e
 
=lg25+lg4+
1
2

=lg100+
1
2

=
5
2
點(diǎn)評:本題考查對數(shù)式和指數(shù)式的運(yùn)算,是基礎(chǔ)題,解題時要注意對數(shù)和指數(shù)的運(yùn)算性質(zhì)和運(yùn)算法則的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+3
3x
(x>0),數(shù)列{an}滿足a1=1,an=f(
1
an-1
)(n∈N*,且n≥2).
(1)求證數(shù)列{an}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x,x≤0
2f(x-1),x>0
,若函數(shù)f(x)=3x+a有且只有一個解,求a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

紅隊(duì)隊(duì)員甲、乙與藍(lán)隊(duì)隊(duì)員A、B進(jìn)行圍棋比賽,甲對A、乙對B各比一盤.已知甲勝A,乙勝B的概率分別為0.6、0.5.假設(shè)各盤比賽結(jié)果相互獨(dú)立.
(1)求紅隊(duì)至少一名隊(duì)員獲勝的概率;
(2)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論關(guān)于x的方程:x2+a=0的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px上任一點(diǎn)到焦點(diǎn)的距離比到y(tǒng)軸距離大1.
(1)求拋物線的方程;
(2)設(shè)A、B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M(4、0),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}中,公比q≠1,Sn=a1+a2+…+an,Tn=
1
a1
+
1
a2
+…+
1
an

(1)用a1,q,n表示
Sn
Tn

(2)若-
3S1
T1
,
S3
T3
,
S5
T5
成等差數(shù)列,求q;
(3)在(2)的條件下,設(shè)a1=1,Rn=
1
a1
+
2
a3
+…+
n
a2n-1
,求證:Rn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的單調(diào)性
(1)f(x)=-
2
x
,x∈(0,+∞);
(2)f(x)=x2+1,x(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
,若|
a
|=3,|
a
-
b
|=
13
,
a
b
=
3
2
,則|
b
|=
 
;向量
a
,
b
夾角的大小為
 

查看答案和解析>>

同步練習(xí)冊答案