在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,,是的中點(diǎn).
(Ⅰ) 求證://平面;
(Ⅱ) 在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
(1)證明線面平行則根據(jù)線面平行的判定定理來證明
(2) 上存在點(diǎn),使二面角的大小為,此時的長為
【解析】
試題分析:由于四邊形是菱形,是的中點(diǎn), ,
所以為等邊三角形,可得.又是矩形,平面⊥平面,
所以⊥平面.如圖建立空間直角坐標(biāo)系 5分
則,, ,.
,.……7分
設(shè)平面的法向量為.
則,所以
令.所以. 9分
又平面的法向量, 10分
所以. 11分
即,解得.所以在線段
上存在點(diǎn),使二面角的大小為,此時的長為. 12分.
考點(diǎn):線面平行,二面角的平面角
點(diǎn)評:主要是考查了空間中的線面平行的證明,以及二面角的求解的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com