已知等差數(shù)列{an}滿足a2=-2,公差d=-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)設(shè)bn=an+2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)首先根據(jù)a2=-2,公差d=-1,求出數(shù)列的首項(xiàng);然后根據(jù)等差數(shù)列的通項(xiàng)公式,求出an即可;
(Ⅱ)首先求出bn=an+2n-1=-n+2n-1,然后把數(shù)列{bn}的前n項(xiàng)和Tn表示成一個等差數(shù)列和一個等比數(shù)列的前n項(xiàng)和的形式,最后根據(jù)等差數(shù)列和等比數(shù)列的前n項(xiàng)和的求和公式解答即可.
解答: 解:(Ⅰ)由a1+d=-2,d=-1,可得a1=-1,
∴an=a1+(n-1)d=-n,
∴{an}的通項(xiàng)公式an=-n;
(Ⅱ)由(Ⅰ)知:bn=-n+2n-1,
∴Sn=(-1+20)+(-2+21)+(-3+22)+…+(-n+2n-1),
=-(1+2+3+…+n)+(20+21+22+…+2n-1
=-
n(n+1)
2
+
1-2n
1-2

=-
n(n+1)
2
+2n-1.
點(diǎn)評:本題主要考查了等差數(shù)列的通項(xiàng)公式,以及等差數(shù)列、等比數(shù)列的求和公式的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),一個焦點(diǎn)與拋物線x2=4
2
y的焦點(diǎn)相同,點(diǎn)P(1,
2
)是橢圓C是一點(diǎn),斜率為
2
的直線l交橢圓C于M,N兩點(diǎn),且P,M,N三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線PM、PN的斜率分別為kPM、kPN,求證:kPM+kPN=0;
(Ⅲ)△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,有一塊邊長為6m的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個邊長為x的小正方形,做成一個長方形的無蓋容器.

(Ⅰ)求這個容器的容積V(x);
(Ⅱ)為使其容積V(x)最大,求截下的小正方形的邊長x的值及容積V(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四邊形ABCD與A′ABB′都是邊長為a的正方形,點(diǎn)E是A′A的中點(diǎn),AA′⊥平面ABCD.
(1)求證:A′C∥平面BDE;
(2)求證:平面A′AC⊥平面BDE;
(3)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1:2x2-y2=2m2(m>0),拋物線C2頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)正好是雙曲線C1的左焦點(diǎn)F.問:是否存在過F且不垂直于x軸的直線l,使l與拋物線C2交于兩點(diǎn)P,Q,并且△POQ的面積為6,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:拋物線y2=4x,直線l過定點(diǎn)Q(2,0).
(Ⅰ)已知直線l與x軸不垂直且與拋物線交于A、B兩點(diǎn),若在x軸上存在一點(diǎn)E(m,0),使得直線AE與直線BE的傾斜角互補(bǔ),求E點(diǎn)的坐標(biāo);
(Ⅱ)已知直線l與x軸垂直,拋物線的一條切線與y軸和直線l分別交于M、N兩點(diǎn),自點(diǎn)M引以QN為直徑的圓的切線,切點(diǎn)為T,證明:|MT|為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在五面體ABCDE中,EA=ED=EC=2,且EA,ED,EC兩兩垂直,AB∥CE,AB=1,F(xiàn)為CD的中點(diǎn).
(1)求五面體ABCDE的體積.
(2)求證:BF∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,
a
b
,b},N={0,a+b,b2},M=N,求a1+b1+a2+b2+…+an+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,A={(x,y)|y=ax+b,x∈Z},B={(x,y)|y=3x2+15,x∈Z},C={(x,y)|x2+y2≤144}.是否存在a,b,使得A∩B≠∅,且(a,b)∈C?

查看答案和解析>>

同步練習(xí)冊答案