A. | 3:1 | B. | 1:3 | C. | 4:1 | D. | 3:2 |
分析 由三視圖可以看出,幾何體是正四棱錐,求出高,設(shè)出球心,通過勾股定理求出球的半徑,再求球的體積、表面積,即可求出球的體積與表面積之比.
解答 解:由三視圖知幾何體是一個正四棱錐,四棱錐的底面是一個邊長為$\sqrt{2}$正方形,高為1,
球心在高的延長線上,球心到底面的距離為h,所以(h+1)2-h2=1,
所以h=0.
故此幾何體外接球的半徑為1
球的體積$\frac{4}{3}π×$13=$\frac{4}{3}$π,表面積為4×π×12=4π,
所以球的體積與表面積之比為1:3,
故選:B.
點評 本題考點是由三視圖求幾何體的面積、體積,考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com