精英家教網 > 高中數學 > 題目詳情
10.-300°化成弧度制為( 。
A.$\frac{10π}{3}$B.$-\frac{5π}{6}$C.$-\frac{5π}{3}$D.$\frac{7π}{3}$

分析 根據角度和弧度之間的關系進行轉化即可.

解答 解:∵180°=π弧度,
∴-300°=-300×$\frac{π}{180}$=$-\frac{5π}{3}$,
故選:C

點評 本題主要考查弧度和角度的轉化,根據180°=π弧度的關系進行轉化是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.函數f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的圖象的相鄰兩條對稱軸間的距離是$\frac{π}{2}$.若將函數f(x)的圖象向右平移$\frac{π}{6}$個單位,再把圖象上每個點的橫坐標縮小為原來的一半,得到g(x),則g(x)的解析式為( 。
A.g(x)=sin(4x+$\frac{π}{6}$)B.g(x)=sin(8x-$\frac{π}{3}$)C.g(x)=sin(x+$\frac{π}{6}$)D.g(x)=sin4x

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.等腰梯形ABCD中,AB∥CD,AD=BC=2,AB=2CD=4,過C,D分別作AB的垂線,垂足分別為E,F,將△BCE,△ADF分別沿CE,DF向上翻折到△B′CE,△A′DF,使得兩個三角形所在平面分別與平面ABCD垂直.連接AA′,A′B′,B′B.
(1)求證:A′D∥平面CB′B;
(2)求幾何體AA′D-BB′C的體積;
(3)求面AA′D與面BB′C所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.若向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=($\sqrt{3}$,-1),則|2$\overrightarrow{a}$-$\overrightarrow$|的最大值為(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知函數f(x)=2sinxcosx+2cos2x-1,求y=f(x)的周期和最值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.曲線y=x4在(1,1)處的切線方程為( 。
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.銳角△ABC的三個內角A,B,C所對的邊分別為a,b,c,設向量$\overrightarrow{m}$=(2,c),$\overrightarrow{n}$=($\frac{2}$cosC-sinA,cosB),已知b=$\sqrt{3}$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角B;
(2)求△ABC面積的最大值及此時另外兩個邊a,c的長.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知變量x,y滿足:$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≥-1}\\{x≤2}\end{array}}\right.$,則z=2x+y的最大值為( 。
A.4B.7C.8D.10

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知以拋物線x2=2py(p>0)的焦點為虛軸的一個端點的雙曲線的標準方程為$\frac{x^2}{8}$-$\frac{y^2}{b^2}$=1(b>0),拋物線的一條與雙曲線的漸近線平行的切線在y軸上的截距為-1,則p的值為4.

查看答案和解析>>

同步練習冊答案