函數(shù)f(x)=x2-2x的零點個數(shù)是________個.

3
分析:本題考查的是函數(shù)零點的個數(shù)判定問題.在解答時,可先結合函數(shù)的特點將問題轉化為研究兩個函數(shù)圖象交點的問題.繼而問題可獲得解答.
解答:由題意可知:
要研究函數(shù)f(x)=x2-2x的零點個數(shù),
只需研究函數(shù)y=2x,y=x2的圖象交點個數(shù)即可.
畫出函數(shù)y=2x,y=x2的圖象
由圖象可得有3個交點.
故答案為:3.
點評:本題考查的是函數(shù)零點的個數(shù)判定問題.在解答的過程當中充分體現(xiàn)了函數(shù)與方程的思想、數(shù)形結合的思想以及問題轉化的思想.值得同學們體會和反思.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當a=5時,求f(x)的單調遞減函數(shù);
(Ⅱ)設直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點P(0,-3).
(1)求過點P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域為
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+
12
x
+lnx的導函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習冊答案