【題目】函數(shù)f(x)= x3﹣ax2﹣4在(3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍為
【答案】(﹣∞, ]
【解析】解:∵f(x)= x3﹣ax2﹣4在(3,+∞)上是增函數(shù),
∴f′(x)≥0恒成立,
即f′(x)=x2﹣2ax≥0在(3,+∞)上恒成立,
即x﹣2a≥0在(3,+∞)上恒成立,
即a≤ 在(3,+∞)上恒成立,
∵x>3,∴ > ,
則a≤ ,
所以答案是:(﹣∞, ]
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的性質(zhì)(函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集),還要掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于在區(qū)間上有意義的函數(shù),滿足對(duì)任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程的解集中有且只有一個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 (m>1)與雙曲線 (n>0)有公共焦點(diǎn)F1 , F2 . P是兩曲線的交點(diǎn),則 =( )
A.4
B.2
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù). 當(dāng)x≥0時(shí),f(x)= ,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】班上有四位同學(xué)申請(qǐng)A,B,C三所大學(xué)的自主招生,若每位同學(xué)只能申請(qǐng)其中一所大學(xué),且申請(qǐng)其中任何一所大學(xué)是等可能的.
(1)求恰有2人申請(qǐng)A大學(xué)或B大學(xué)的概率;
(2)求申請(qǐng)C大學(xué)的人數(shù)X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用模型函數(shù)y= 作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)設(shè)向量 與 的夾角為β,求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(1)若f(x)在上為增函數(shù),求m的取值范圍;
(2)若f(x)的值域?yàn)镽,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)分別為, (),求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com