4.復(fù)數(shù)$\frac{2}{i}$=-2i.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)$\frac{2}{i}$=$\frac{-2i}{-i•i}$=-2i,
故答案為:-2i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)滿足條件:對(duì)于函數(shù)f(x)的零點(diǎn)x0,當(dāng)$\left\{\begin{array}{l}(a-{x_0})(b-{x_0})<0\\(a-b)[f(a)-f(b)]<0\end{array}\right.$成立時(shí),恒有$ab<x_0^2$或a+b<2x0,則稱函數(shù)f(x)為“好函數(shù)”.則下列三個(gè)函數(shù):①f(x)=|lgx|,②f(x)=|cosx|(0≤x≤π),③f(x)=|2x-2|,為“好函數(shù)”的個(gè)數(shù)有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=a-$\frac{1}{x}$-lnx.
(1)若a=2,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)=0恰有一個(gè)解,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知拋物線y2=4x的焦點(diǎn)為F,直線l過F且依次交拋物線及圓${(x-1)^2}+{y^2}=\frac{1}{4}$于點(diǎn)A,B,C,D四點(diǎn),則4|AB|+9|CD|的最小值為$\frac{37}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,根據(jù)列聯(lián)表數(shù)據(jù)計(jì)算得到K2=5.059,因?yàn)镻(K2≥5.024)=0.025,則認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系”的把握大約為(  )
A.2.5%B.95%C.97.5%D.不具有相關(guān)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=-x2-10x在(-∞,λ]上是增函數(shù),則方程組$\left\{\begin{array}{l}({λ-1})x+4y=1\\ 3x+λy=2\end{array}\right.$的解的組數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$),則函數(shù)f(x)圖象的對(duì)稱軸為(  )
A.x=$\frac{π}{12}$+kπ(k∈z)B.x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈z)C.x=-$\frac{π}{6}$+kπ(k∈z)D.x=-$\frac{π}{6}$+$\frac{kπ}{2}$(k∈z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長(zhǎng)軸是圓x2+y2=4的一條直徑,且右焦點(diǎn)到直線x+y-2$\sqrt{3}$=0的距離為$\frac{{\sqrt{6}}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l:y=kx+m(k∈R)與橢圓C交于A,B兩點(diǎn),使得$|{2\overrightarrow{OA}+\overrightarrow{OB}}|=|{2\overrightarrow{OA}-\overrightarrow{OB}}$|成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f'(x)為定義在$({0,\frac{π}{2}})$上的函數(shù)f(x)的導(dǎo)函數(shù),且cosx•f(x)<f'(x)•sinx在$({0,\frac{π}{2}})$上恒成立,則( 。
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$\sqrt{2}f({\frac{π}{6}})>f({\frac{π}{4}})$C.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$D.$f(1)<2f({\frac{π}{6}})sin1$

查看答案和解析>>

同步練習(xí)冊(cè)答案