3.已知球O的半徑為2,圓M和圓N是球的互相垂直的兩個(gè)截面,圓M和圓N的面積分別為2π和π,則|MN|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 可以從三個(gè)圓心上找關(guān)系,構(gòu)建矩形利用勾股定理即可求解出答案.

解答 解:設(shè)兩圓的圓心分別為M、N,球心為O,公共弦為AB,
其中點(diǎn)為E,則OMEN為矩形,
∵圓M和圓N的面積分別為2π和π,
∴圓M和圓N的半徑分別為$\sqrt{2}$和1,
于是OM=$\sqrt{4-2}$=$\sqrt{2}$,ON=$\sqrt{4-1}$=$\sqrt{3}$,
∴MN=$\sqrt{2+3}$=$\sqrt{5}$.
故選D

點(diǎn)評(píng) 本題主要考查球的有關(guān)概念以及兩平面垂直的性質(zhì),是對(duì)基礎(chǔ)知識(shí)的考查.解決本題的關(guān)鍵在于得到OMEN為矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)拋物線y2=4x焦點(diǎn)F,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線相交于A、B兩點(diǎn),且點(diǎn)P恰好為線段AB的中點(diǎn),則|AF|+|BF|=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某導(dǎo)演先從2個(gè)金雞獎(jiǎng)和3個(gè)百花獎(jiǎng)的5位演員名單中挑選2名演主角,后又從剩下的演員中挑選1名演配角.這位導(dǎo)演挑選出2個(gè)金雞獎(jiǎng)演員和1個(gè)百花獎(jiǎng)演員的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{10}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),若向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影長為1,則m=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.向量的運(yùn)算常常與實(shí)數(shù)運(yùn)算進(jìn)行類比,下列類比推理中結(jié)論正確的是( 。
A.“若ac=bc(c≠0),則a=b”類比推出“若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$($\overrightarrow{c}$≠$\overrightarrow{0}$),則$\overrightarrow{a}$=$\overrightarrow$”
B.“在實(shí)數(shù)中有(a+b)c=ac+bc”類比推出“在向量中($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.“在實(shí)數(shù)中有(ab)c=a(bc)”類比推出“在向量中($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
D.“若ab=0,則a=0或b=0”類比推出“若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等比數(shù)列{an}中,an>0,a3+2a2=a4,則數(shù)列{an}的公比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=blnx.
(1)當(dāng)b=1時(shí),求G(x)=x2-x-f(x)在區(qū)間[${\frac{1}{2}$,e]上的最值;
(2)若存在一點(diǎn)x0∈[1,e],使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,圓M與圓N交于A、B兩點(diǎn),以A為切點(diǎn)作兩圓的切線分別交圓M和圓N于C,D兩點(diǎn),延長DB交圓M于點(diǎn)E,延長CB交圓N于點(diǎn)F.
(1)求證:△ABC~△DBA;
(2)求證:CF=DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在棱BC上移動(dòng).
(1)當(dāng)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并請(qǐng)說明理由;
(2)當(dāng)E為BC的中點(diǎn)時(shí),求直線EF與平面PDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案