11.已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若a=bcosC+csinB,且△ABC的面積為1+$\sqrt{2}$.則b的最小值為( 。
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

分析 已知等式利用正弦定理化簡,再利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式化簡,求出tanB的值,確定出B的度數(shù),利用三角形面積公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.

解答 解:由正弦定理得到:sinA=sinCsinB+sinBcosC,
∵在△ABC中,sinA=sin[π-(B+C)]=sin(B+C),
∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,
∴cosBsinC=sinCsinB,
∵C∈(0,π),sinC≠0,
∴cosB=sinB,即tanB=1,
∵B∈(0,π),
∴B=$\frac{π}{4}$,
∵S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{2}}{4}$ac=1+$\sqrt{2}$,
∴ac=4+2$\sqrt{2}$,
由余弦定理得到:b2=a2+c2-2accosB,即b2=a2+c2-$\sqrt{2}$ac≥2ac-$\sqrt{2}$ac=4,當(dāng)且僅當(dāng)a=c時取“=”,
∴b的最小值為2.
故選:A.

點(diǎn)評 此題考查了正弦、余弦定理,基本不等式以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長度建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ.
(1)化曲線C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C2與x軸的一個交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過點(diǎn)P作斜率為1的直線l,l交曲線C2于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.以“賞中華詩詞,尋文化基因,品生活之美”為宗旨的《中國詩詞大會》,是央視科教頻道推出的一檔大型演播室文化益智節(jié)目,每季賽事共分為10場,每場分個人追逐賽與擂主爭霸賽兩部分,其中擂主爭霸賽在本場個人追逐賽的優(yōu)勝者與上一場擂主之間進(jìn)行,一共備有9道搶答題,選手搶到并答對獲得1分,答錯對方得1分,當(dāng)有一個選手累計得分達(dá)到5分時比賽結(jié)束,該選手就是本場的擂主,在某場比賽中,甲、乙兩人進(jìn)行擂主爭霸賽,設(shè)每個題目甲答對的概率都為$\frac{3}{4}$,乙答對的概率為$\frac{5}{12}$,每道題目都有人搶答,且每人搶到答題權(quán)的概率均為$\frac{1}{2}$,各題答題情況互不影響.
(Ⅰ)求搶答一道題目,甲得1分的概率;
(Ⅱ)現(xiàn)在前5題已經(jīng)搶答完畢,甲得2分,乙得3分,在接下來的比賽中,設(shè)甲的得分為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九韶算法,f(x)=anxn+an-1xn-1+…+a1x+a0改寫成如下形式f(x)=(…((anx+an-1)x+an-2)x+…a1)x+a0.至今仍是比較先進(jìn)的算法,特別是在計算機(jī)程序應(yīng)用上,比英國數(shù)學(xué)家取得的成就早800多年.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實(shí)例,若輸入n,x的值分別為5,2,則輸出v的值為(  )
A.130B.120C.110D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$,過x軸上點(diǎn)P的直線l與雙曲線的右支交于M,N兩點(diǎn)(M在第一象限),直線MO交雙曲線左支于點(diǎn)Q(O為坐標(biāo)原點(diǎn)),連接QN.若∠MPO=60°,∠MNQ=30°,則該雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m∈R)為偶函數(shù),記a=f(-2),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,an2+2an-n2+2n=0(n∈N+
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(x-1),x≥2\\{x^2}-2x,x<2\end{array}\right.$,則f(f(3))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,則$\overrightarrow a$與$\overrightarrow b$夾角是$\frac{5π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案