A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 已知等式利用正弦定理化簡,再利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式化簡,求出tanB的值,確定出B的度數(shù),利用三角形面積公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.
解答 解:由正弦定理得到:sinA=sinCsinB+sinBcosC,
∵在△ABC中,sinA=sin[π-(B+C)]=sin(B+C),
∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,
∴cosBsinC=sinCsinB,
∵C∈(0,π),sinC≠0,
∴cosB=sinB,即tanB=1,
∵B∈(0,π),
∴B=$\frac{π}{4}$,
∵S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{2}}{4}$ac=1+$\sqrt{2}$,
∴ac=4+2$\sqrt{2}$,
由余弦定理得到:b2=a2+c2-2accosB,即b2=a2+c2-$\sqrt{2}$ac≥2ac-$\sqrt{2}$ac=4,當(dāng)且僅當(dāng)a=c時取“=”,
∴b的最小值為2.
故選:A.
點(diǎn)評 此題考查了正弦、余弦定理,基本不等式以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 130 | B. | 120 | C. | 110 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com