設(shè)f(x)=2x3+ax2+bx+1的導數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對稱,且f′(1)=0.
(1)求實數(shù)a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間 。
(1)a=3、 b=—12;(2)單調(diào)等增區(qū)間為(-∞,-2)和(1,+∞),單調(diào)遞減區(qū)間為(-2,1)。
解析試題分析:(1) 因為f′(x) 的圖象關(guān)于直線x=-對稱,所以,所以a=3;又f′(1)=0,所以b=—12。
(2)由(1)知,知f(x)=2x3+3x2-12x+1,所以f′(x)=6x2+6x-12=6(x-1)(x+2),
令f′(x)=0,得x=1或x=-2,
當x∈(-∞,-2)時,f′(x)>0,f(x)在(-∞,-2)上是增函數(shù);
當x∈(-2,1)時,f′(x)<0,f(x)在(-2,1)上是減函數(shù);
當x∈(1,+∞)時,f′(x)>0,f(x)在(1,+∞)上是增函數(shù)。
所以f(x)的單調(diào)等增區(qū)間為(-∞,-2)和(1,+∞),單調(diào)遞減區(qū)間為(-2,1)。
考點:本題考查利用導數(shù)研究函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì)。
點評:當f(x)不含參數(shù)時,可通過解不等式f′(x)>0(或f′(x)<0)直接得到單調(diào)遞增(或單調(diào)遞減)區(qū)間。但要注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:解答題
(13分) 設(shè)函數(shù).
(1)當時,求函數(shù)在上的最大值;
(2)記函數(shù),若函數(shù)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義域為的函數(shù)同時滿足:
①對于任意的,總有; ②;
③若,則有成立。
求的值;
求的最大值;
若對于任意,總有恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
對于定義域為D的函數(shù),若同時滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域為[];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若函數(shù)是閉函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設(shè),且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求的取值范圍;
(2)討論函數(shù)的單調(diào)性并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實數(shù)有:且時,.
(1)證明:;
(2)證明:當時,;
(3)當時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com