【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對(duì)稱軸間的距離是 .若將函數(shù)f(x)的圖象向右平移 個(gè)單位,再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來的一半,得到g(x),則g(x)的解析式為( )
A.g(x)=sin(4x+ )
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+ )
D.g(x)=sin4x
【答案】D
【解析】解:∵函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對(duì)稱軸間的距離是 T= = ,∴ω=2.
若將函數(shù)f(x)的圖象向右平移 個(gè)單位,可得y=sin[2(x﹣ )+ ]=sin2x的圖象,
再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來的一半,得到g(x)=sin4x的圖象,
故選:D.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1 .
(1)求證:AB1⊥平面A1BC1;
(2)若D為B1C1的中點(diǎn),求AD與平面A1BC1所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為得到函數(shù)y=sin(2x+ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向右平移 長度單位
B.向左平移 個(gè)長度單位
C.向右平移個(gè) 長度單位
D.向左平移 長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù).
(1)設(shè)集合和,分別從集合中隨機(jī)取一個(gè)數(shù)作為和,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(2)設(shè)點(diǎn)是區(qū)域內(nèi)的隨機(jī)點(diǎn), 求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品每件成本為6元,每件售價(jià)為元(),年銷售萬件,若已知與成正比,且售價(jià)為10元時(shí),年銷量為28萬件.
(1)求年銷售利潤關(guān)于售價(jià)的函數(shù)關(guān)系式.
(2)求售價(jià)為多少時(shí),年利潤最大,并求出最大年利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用1、2、3、4、5、6這六個(gè)數(shù)字可組成多少個(gè)無重復(fù)數(shù)字且不能被5整除的五位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com