已知橢圓的兩個焦點,,過且與坐標軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及定值;若不存在,說明理由。
(1) ;(2)   定值

試題分析:(I)由題意知c=,4a=8,∴a=2,b=1
∴橢圓的方程為。
(II)當直線l的斜率存在時,設(shè)其斜率為k,則l的方程為y=k(x-1)
消去y得(4k2+1)x2-8k2x+4k2-4=0
設(shè)P(x1,y1),Q(x2,y2
則由韋達定理得x1+x2=,x1x2=
=(m-x1,-y1),=(m-x2,-y2)
·=(m-x1)(m-x2)+y1y2=m2-m(x1+x2)+x1x2+y1y2
=m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)
==
要使上式為定值須=4,解得m=,∴為定值
當直線l的斜率不存在時P(1,),Q(1,-)由E(,0)可得
=(,-),
=(,)∴=
綜上所述當時,為定值
點評:難題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),注意明確焦點軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)推理直線斜率的兩種情況,易于出現(xiàn)遺漏現(xiàn)象。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的圓心是直線與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于,兩點,拋物線在、兩點處的切線交于點.

(Ⅰ)求證:,三點的橫坐標成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1(a>b>0)上一點A關(guān)于原點的對稱點為B, F為其右焦點, 若AF⊥BF, 設(shè)∠ABF=, 且∈[,], 則該橢圓離心率的取值范圍為            (       )
A.[,1 ) B.[,]C.[, 1) D.[,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓上找一點,使這一點到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C的直角坐標方程為,以原點為極點,x軸的正半軸為極軸建立極坐標系,則曲線C的極坐標方程為 __________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若焦點在軸上的橢圓的離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案