已知f(x)=
ax,x<2
(5-a)x-a,x≥2
是R上的增函數(shù),那么a的取值范圍是( 。
A、(0,1)
B、(1,5)
C、(1,2]
D、[2,5)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),y=g(x)的圖象如圖所示,則函數(shù)y=g[|f(x)|]的大致圖象是( 。
A、B、C、D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2014(x∈R),又α、β是銳角三角形的兩個內(nèi)角,則有( 。
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log3x,x>0
(
1
3
)
x
,x≤0
,那么不等式f(x)≥1的解集為( 。
A、{x|-3≤x≤0}
B、{x|x≤-3或x≥0}
C、{x|0≤x≤3}
D、{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
kx+1,x≤0
lnx
x
,x>0
,則關(guān)于F(x)=f(f(x))+a的零點(diǎn)個數(shù),判斷正確的是( 。
A、k<0時,若a≥e,則有2個零點(diǎn)
B、k>0時,若a>e,則有4個零點(diǎn)
C、無論k為何值,若-
1
e
<a<0,都有2個零點(diǎn)
D、k>0時,若0≤a<e,則有3個零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lnx|,0<x≤e
2-lnx,x>e
,若f(a)=1,則a的所有可能結(jié)果之和為( 。
A、e
B、
1
e
C、e+
1
e
D、2e+
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,如果不同的兩點(diǎn)A(a,b),B(-a,-b)都在函數(shù)y=f(x)的圖象上,則稱[A,B]為函數(shù)y=f(x)的一組“和諧點(diǎn)”([A,B]與[B,A]看成一組),函數(shù)g(x)=
sinx(x≤0)
|lgx|(x>0)
的“和諧點(diǎn)”共有
 
組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間(-1,1]上,f(x)=
2x+1 ,  -1<x<0   
ax+2
x+1
 ,  0≤x≤1   
,其中常數(shù)a∈R,且f(
1
2
)=f(
3
2
).
(1)求a的值;
(2)設(shè)函數(shù)g(x)=f(x)+f(-x),x∈[-2,-1]∪[1,2].
①求證:g(x)是偶函數(shù);
②求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α、β和直線m,給出條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.由這五個條件中的兩個同時成立能推導(dǎo)出m∥β的是(  )
A、①④B、①⑤C、②⑤D、③⑤

查看答案和解析>>

同步練習(xí)冊答案