【題目】已知兩直線l1:x+8y+7=0和l2:2x+y﹣1=0.
(1)求l1與l2交點(diǎn)坐標(biāo);
(2)求過(guò)l1與l2交點(diǎn)且與直線x+y+1=0平行的直線方程.

【答案】
(1)解:聯(lián)立兩條直線的方程可得:

解得x=1,y=﹣1

所以l1與l2交點(diǎn)坐標(biāo)是(1,﹣1)


(2)解:設(shè)與直線x+y+1=0平行的直線l方程為x+y+c=0

因?yàn)橹本l過(guò)l1與l2交點(diǎn)(1,﹣1)

所以c=0

所以直線l的方程為x+y=0


【解析】(1)聯(lián)立兩條直線的方程可得: ,解得x=1,y=﹣1.(2)設(shè)與直線x+y+1=0平行的直線l方程為x+y+c=0因?yàn)橹本l過(guò)l1與l2交點(diǎn)(1,﹣1),所以c=0.
【考點(diǎn)精析】本題主要考查了點(diǎn)斜式方程的相關(guān)知識(shí)點(diǎn),需要掌握直線的點(diǎn)斜式方程:直線經(jīng)過(guò)點(diǎn),且斜率為則:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.

(1)求橢圓的方程;

(2)直線(與軸不重合)過(guò)點(diǎn)且與橢圓交于兩點(diǎn),直線交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面平面,// ,,

,且.

1)求證:平面;

2)求和平面所成角的正弦值;

3)在線段上是否存在一點(diǎn)使得平面平面,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生對(duì)“兩個(gè)一百年”奮斗目標(biāo)、實(shí)現(xiàn)中華民族偉大復(fù)興中國(guó)夢(mèng)的“關(guān)注度”(單位:天),某中學(xué)團(tuán)委組織學(xué)生在十字路口采用隨機(jī)抽樣的方法抽取了80名青年學(xué)生(其中男女人數(shù)各占一半)進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組青年學(xué)生的月“關(guān)注度”分為6組: , , , ,得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)現(xiàn)從“關(guān)注度”在的男生與女生中選取3人,設(shè)這3人來(lái)自男生的人數(shù)為,求的分布列與期望;

(3)在抽取的80名青年學(xué)生中,從月“關(guān)注度”不少于25天的人中隨機(jī)抽取2人,求至少抽取到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計(jì)得知,該金匠平均每加5 個(gè)飾品中有4個(gè)成品和1個(gè)廢品,每個(gè)成品可獲利3萬(wàn)元,每個(gè)廢品損失1萬(wàn)元,假設(shè)該金匠加工每件飾品互不影響,以頻率估計(jì)概率.

(1)若金金匠加工4個(gè)飾品,求其中廢品的數(shù)量不超過(guò)1的概率;

(2)若該金匠加工了 3個(gè)飾品,求他所獲利潤(rùn)的數(shù)學(xué)期望.

(兩小問(wèn)的計(jì)算結(jié)果都用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: 的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,

(1)求橢圓C的離心率;
(2)如果|AB|= ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案