若復(fù)數(shù)z滿足:iz=3+4i,則z=( 。
A、-3-4iB、4+3i
C、4-3iD、-4+3i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由iz=2+4i,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算可得結(jié)果.
解答: 解:由iz=3+4i,得z=
3+4i
i
=
(3+4i)i
i•i
=4-3i,
故選:C.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,屬基礎(chǔ)題,熟記有關(guān)運(yùn)算法則是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥1
y≥1
x+y≤5
時(shí),z=
x
a
+
y
b
 
(a≥b>0)的最大值為1,則a+b的最小值為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項(xiàng)和,滿足a3=4,S7=35;Tn是數(shù)列{bn}的前n項(xiàng)和,滿足:Tn=2bn-2(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列cn=
an
an+1
+
log2bn+1
log2bn
的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x2-kx-8在區(qū)間[5,10]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x,y∈R,若x≠2或y≠3,則x+y≠5”是
 
.(填“真命題”或“假命題”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在y軸上的雙曲線的一條漸近線方程是x-
3
y=0,此雙曲線的離心率為( 。
A、
3
B、
2
3
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足方程(x-2)2+y2=1,那么
y
x
的最大值為(  )
A、
1
2
B、
3
2
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
Sn
}
的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),過F2作傾斜角為
π
3
的直線交橢圓D于A,B兩點(diǎn),F(xiàn)1到直線AB的距離為3,連接橢圓D的四個(gè)頂點(diǎn)得到的菱形面積為4.
(Ⅰ)求橢圓D的方程;
(Ⅱ)已知點(diǎn)M(-1,0),設(shè)E是橢圓D上的一點(diǎn),過E、M兩點(diǎn)的直線l交y軸于點(diǎn)C,若
CE
EM
,求λ的取值范圍;
(Ⅲ)作直線l1與橢圓D交于不同的兩點(diǎn)P,Q,其中P點(diǎn)的坐標(biāo)為(-2,0),若點(diǎn)N(0,t)是線段PQ垂直平分線上一點(diǎn),且滿足
NP
NQ
=4,求實(shí)數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案