(2013•重慶)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.

(1)V(r)=(300r﹣4r3)   (0,5
(2)見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知定義在上的奇函數(shù),當時,
(1)求函數(shù)上的解析式;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)g(x)=+1,h(x)=,x∈(-3,a],其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)·h(x).
(1)求函數(shù)f(x)的表達式,并求其定義域;
(2)當a=時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)中,為奇數(shù),均為整數(shù),且均為奇數(shù).求證:無整數(shù)根。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)設(shè)n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(2)證明:
(3)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如.令的值.
(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2014·西安模擬)已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域.
(2)求滿足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)若方程有3個不同的根,求實數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實數(shù),使得上恰有兩個極值點,且滿足,若存在,求實數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當時,求證函數(shù)存在反函數(shù).

查看答案和解析>>

同步練習冊答案