4.對兩個(gè)變量的相關(guān)系數(shù)r,下列說法中正確的是(  )
A.|r|越大,相關(guān)程度越小B.|r|越小,相關(guān)程度越大
C.|r|趨近于0時(shí),沒有非線性相關(guān)關(guān)系D.|r|越接近于1時(shí),線性相關(guān)程度越強(qiáng)

分析 根據(jù)題意,由相關(guān)系數(shù)r的意義,分析選項(xiàng),即可得答案.

解答 解:根據(jù)題意,兩個(gè)變量之間的相關(guān)系數(shù),r的絕對值越接近于1,
表面兩個(gè)變量的線性相關(guān)性越強(qiáng),
r的絕對值越接近于0,表示兩個(gè)變量之間幾乎不存在線性相關(guān),
故選:D.

點(diǎn)評 本題考查相關(guān)系數(shù)r的意義,關(guān)鍵是掌握相關(guān)系數(shù)r的統(tǒng)計(jì)意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,一個(gè)平面圖形的斜二測畫法的直觀圖是一個(gè)邊長為$\sqrt{2}a$的正方形,則原平面圖形的面積為( 。
A.$\frac{{\sqrt{2}}}{4}{a^2}$B.$\sqrt{2}{a^2}$C.$2\sqrt{2}{a^2}$D.$4\sqrt{2}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某媒體對“男女同齡退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,表是在某單位得到的數(shù)據(jù)(人數(shù)).
贊成反對合計(jì)
5611
11314
合計(jì)16925
(I )能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?
(II)從反對“男女同齡退休”的甲、乙等6名男士中選出2人進(jìn)行陳述,求甲、乙至少有一人被選出的概率.
附:
P(K2≥k)0.250.150.10
k1.3232.0722.706
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)等差數(shù)列{an}滿足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,求該數(shù)列首項(xiàng)a1的取值范圍( 。
A.$(\frac{7π}{6},\frac{4π}{3})$B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一等比數(shù)列的前三項(xiàng)依次是x,2x+2,3x+3.那么-$\frac{27}{2}$是該等比數(shù)列的第幾項(xiàng)( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將兩枚質(zhì)地均勻的骰子各擲一次,設(shè)事件A={兩個(gè)點(diǎn)數(shù)之和大于8},B={出現(xiàn)一個(gè)5點(diǎn)},則P(B|A)=( 。
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{5}}{_{5}}$=( 。
A.$\frac{16}{25}$B.$\frac{9}{14}$C.$\frac{15}{23}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,已知a2+b2+$\sqrt{2}ab={c^2}$,則角C=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a∈R,函數(shù)$f(x)={2^{\frac{1}{x}+a}}$.
(1)當(dāng)a=1時(shí),解不等式f(x)>4;
(2)若f(x)>2-x在x∈[2,3]恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)-2(a-4)x+2a-5=0在區(qū)間(-2,0)內(nèi)的解恰有一個(gè),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案