設(shè)關(guān)于x的函數(shù)f(x)=sin2x-2acosx-1
(1)求函數(shù)f(x)的最大值g(a);
(2)試確定滿足g(a)=數(shù)學(xué)公式的a,并對(duì)此時(shí)的a值求y的最大值.

解:(1)f(x)=sin2x-2acosx-1=-cos2x-2acosx=-(cosx+a)2+a2
當(dāng)-1≤a≤1時(shí),g(a)=a2;
當(dāng)-a<-1即a>1時(shí),g(a)=-(-1+a)2+a2=2a-1;
當(dāng)-a>1即a<-1時(shí),g(a)=-(1+a)2+a2=-2a-1
故 g(a)=
(2)∵g(a)=
∴當(dāng)a<-1時(shí),g(a)=-2a-1=,得a=-(舍去),
當(dāng)a>1時(shí),g(a)=2a-1=,解得a=(舍去),
當(dāng)-1≤a≤1時(shí),g(a)=a2=,
解得a=或-,
故a=,
此時(shí)f(x)=-(cosx+2+或f(x)=-(cosx-2+
當(dāng)cosx=或cosx=-時(shí)f(x)有最大值,
綜上所述,a=時(shí),f(x)最大值為
分析:(1)先根據(jù)同角三角函數(shù)的基本關(guān)系進(jìn)行化簡(jiǎn),然后轉(zhuǎn)化為關(guān)于cosx的一元二次函數(shù),再根據(jù)一元二次函數(shù)的性質(zhì)與cosx的范圍確定函數(shù)f(x)的最大值g(a).
(2)根據(jù)(1)中的g(a)的解析式確定f(a)=的a的范圍,進(jìn)而求出a的值,最后將a的值代入到函數(shù)f(x)中即可根據(jù)cosx的范圍和一元二次函數(shù)的性質(zhì)可求出其最大值.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系和一元二次函數(shù)的基本性質(zhì).考查基礎(chǔ)知識(shí)的綜合應(yīng)用和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省唐山市高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實(shí)數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅱ)設(shè)函數(shù),其中p≤0,若對(duì)任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省年高考數(shù)學(xué)壓軸卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實(shí)數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅱ)設(shè)函數(shù),其中p≤0,若對(duì)任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省月考題 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù) ,若對(duì)任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省黃岡市浠水二中高三(上)9月數(shù)學(xué)滾動(dòng)試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù),若對(duì)任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省荊州中學(xué)高三(上)9月質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)關(guān)于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù),若對(duì)任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案