有四個(gè)命題

(1)一條直線和另一條直線平行,它就和經(jīng)過另一條直線的任何平面平行

(2)一條直線和一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任何直線平行

(3)平行于同一平面的兩條直線平行

(4)如果直線a∥平面α,a平面β,且α∩β=b,則a∥b.

其中假命題共有

[  ]

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

答案:C
解析:

此題考查線線位置關(guān)系和線面位置關(guān)系,以及空間想象能力.一條直線和另一條直線平行,它可能在經(jīng)過另一條直線的平面內(nèi),故(1)是假命題.一條直線和另一個(gè)平面平行,它與這個(gè)平面的直線可能平行,也可能異面,故(2)也是假命題,又平行于同一平面的兩條直線,也可能平行,也可能異面或相交,故(3)也是假命題,而命題(4)是真命題,也是線面平行的性質(zhì)定理.故選C.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個(gè)命題:
①如果已知一個(gè)數(shù)列的遞推公式及其首項(xiàng),那么可以寫出這個(gè)數(shù)列的任何一項(xiàng);
②數(shù)列
2
3
,
3
4
,
4
5
5
6
,…的通項(xiàng)公式是an=
n
n+1

③數(shù)列的圖象是一群孤立的點(diǎn);
④數(shù)列1,-1,1,-1,…與數(shù)列-1,1,-1,1,…是同一數(shù)列.
其中正確命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個(gè)命題:
(1)x=2kπ+
π
3
(k∈Z)
是tanx=
3
的充分非必要條件;
(2)函數(shù)f (x)=|2cos2x-1|的最小正周期是π;
(3)函數(shù)f (x)=sin(x+
π
4
)在[-
π
2
,
π
2
]
上是增函數(shù);
(4)函數(shù)f (x)=asinx-bcosx的圖象的一條對(duì)稱軸為直線x=
π
4
,則a+b=0.
其中正確命題的序號(hào)是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)一模)在平面直角坐標(biāo)系內(nèi),設(shè)M(x1,y1)、N(x2,y2)為不同的兩點(diǎn),直線l的方程為ax+by+c=0,δ1=ax1+by1+c,δ2=ax2+by2+c.有四個(gè)命題:
①若δ1δ2>0,則點(diǎn)M、N一定在直線l的同側(cè);
②若δ1δ2<0,則點(diǎn)M、N一定在直線l的兩側(cè);
③若δ12=0,則點(diǎn)M、N一定在直線l的兩側(cè);
④若
δ
2
1
δ
2
2
,則點(diǎn)M到直線l的距離大于點(diǎn)N到直線l的距離.
上述命題中,全部真命題的序號(hào)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)以下四個(gè)命題
①在一次試卷分析中,從每個(gè)試室中抽取第5號(hào)考生的成績(jī)進(jìn)行統(tǒng)計(jì),是簡(jiǎn)單隨機(jī)抽樣;
②樣本數(shù)據(jù):3,4,5,6,7的方差為2;
③對(duì)于相關(guān)系數(shù)r,|r|越接近1,則線性相關(guān)程度越強(qiáng);
④通過隨機(jī)詢問110名性別不同的行人,對(duì)過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下列聯(lián)表:

總計(jì)
走天橋 40 20 60
走斑馬線 20 30 50
總計(jì) 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8

則有99%以上的把握認(rèn)為“選擇過馬路方式與性別有關(guān)”.其中正確的命題序號(hào)是
②③④
②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案