已知直線l:ax+y=1在矩陣A=
.
12
01
.
對(duì)應(yīng)的變換作用下變?yōu)橹本l′:x+by=1.
(Ⅰ)求實(shí)數(shù)a,b的值;  
(Ⅱ)若點(diǎn)p(x0,y0)在直線上,且A
.
x0 
y0 
.
=
.
x0 
y0 
.
,求點(diǎn)p的坐標(biāo).
分析:(I)任取直線l:ax+y=1上一點(diǎn)M(x,y),經(jīng)矩陣A變換后點(diǎn)為M′(x′,y′),利用矩陣乘法得出坐標(biāo)之間的關(guān)系,求出直線l′的方程,從而建立關(guān)于a,b的方程,即可求得實(shí)數(shù)a,b的值;
(II)由A
.
x0 
y0 
.
=
.
x0 
y0 
.
x0=x0+2y0
y0=y0
,從而解得y0的值,又點(diǎn)P(x0,y0)在直線l上,即可求出點(diǎn)P的坐標(biāo).
解答:解:(I)任取直線l:ax+y=1上一點(diǎn)M(x,y),
經(jīng)矩陣A變換后點(diǎn)為M′(x′,y′),則有
12
01
 
x 
y 
=
x′ 
y′ 
,
可得
x′=x+2y
y′=y
,又點(diǎn)M′(x′,y′)在直線l′上,∴x+(b+2)y=1,
可得
a=1
b+2=1
,解得
a=1
b=-1

(II)由A
.
x0 
y0 
.
=
.
x0 
y0 
.
x0=x0+2y0
y0=y0
,從而y0=0,
又點(diǎn)P(x0,y0)在直線l上,∴x0=1,
∴點(diǎn)P的坐標(biāo)為(1,0).
點(diǎn)評(píng):本題以矩陣為依托,考查矩陣的乘法,考查矩陣變換,關(guān)鍵是正確利用矩陣的乘法公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax-y+4=0及圓C:x2+y2-2x-4y+1=0
(1)若直線l與圓C相切,求a的值;
(2)若直線l與圓C相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為2
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax-y+1=0,點(diǎn)A(1,-3),B(2,3),若直線l與線段AB有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)選修4-2:矩陣與變換
已知直線l:ax+y=1在矩陣A=
12
01
對(duì)應(yīng)的變換作用下變?yōu)橹本l′:x+by=1
(I)求實(shí)數(shù)a,b的值
(II)若點(diǎn)P(x0,y0)在直線l上,且A
x0
y
 
0
=
x0
y
 
0
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+y-2
2
=0(a∈R),圓C:x2+y2=1
,若過l上任一點(diǎn)P可作圓的兩條切線,設(shè)切點(diǎn)為A、B.
(1)求a的范圍;
(2)若當(dāng)兩條切線長(zhǎng)最短時(shí),他們的夾角是60°,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案