12.已知圓O的直徑AB=4,C為AO的中點,弦DE過點C且滿足CE=2CD,求△OCE的面積.

分析 由相交弦定理,得CD,DE中點H,則OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面積.

解答 解:設(shè)CD=x,則CE=2x.
因為CA=1,CB=3,
由相交弦定理,得CA•CB=CD•CE,
所以1×3=x•2x=2x2,所以$x=\frac{{\sqrt{6}}}{2}$.…2分
取DE中點H,則OH⊥DE.
因為$O{H^2}=O{E^2}-E{H^2}=4-{(\frac{3}{2}x)^2}=\frac{5}{8}$,
所以$OH=\frac{{\sqrt{10}}}{4}$.…6分
又因為$CE=2x=\sqrt{6}$,
所以△OCE的面積$S=\frac{1}{2}OH•CE=\frac{1}{2}×\frac{{\sqrt{10}}}{4}×\sqrt{6}=\frac{{\sqrt{15}}}{4}$. …10分.

點評 本題考查的是相交弦定理,垂徑定理與勾股定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.水是地球上寶貴的資源,由于價格比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴(yán)重的資源浪費.某市政府為了提倡低碳環(huán)保的生活理念鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;
(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為[1,1.5)和[1.5,2)之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設(shè)X為用水量噸數(shù)在[1,1.5)中的獲獎的家庭數(shù),Y為用水量噸數(shù)在[1.5,2)中的獲獎家庭數(shù),記隨機變量Z=|X-Y|,求Z的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)z=(1+2i)2,其中i為虛數(shù)單位,則z的實部為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩曲線f(x)=2sinx,g(x)=acosx,$x∈(0\;,\;\;\frac{π}{2})$相交于點P.若兩曲線在點P處的切線互相垂直,則實數(shù)a的值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)={x^{\frac{1}{2}}}$,則( 。
A.?x0∈R,使得f(x)<0
B.?x∈[0,+∞),f(x)≥0
C.?x1,x2∈[0,+∞),使得$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$
D.?x1∈[0,+∞),?x2∈[0,+∞)使得f(x1)>f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.文淵閣本四庫全書《張丘建算經(jīng)》卷上(二十三):今有女子不善織,日減功,遲.初日織五尺,末日織一尺,今三十日織訖.問織幾何?意思是:有一女子不善織布,逐日所織布按等差數(shù)列遞減,已知第一天織5尺,最后一天織1尺,共織了30天.問共織布90尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+({1-a})x-alnx$.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)a<0,若對?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,則其圖象向右平移$\frac{π}{3}$個單位后的單調(diào)遞減區(qū)間是(  )
A.$[{-\frac{π}{4}+kπ,\frac{π}{4}+kπ}](k∈Z)$B.$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}](k∈Z)$
C.$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}](k∈Z)$D.$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}](k∈Z)$

查看答案和解析>>

同步練習(xí)冊答案