某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).

;

;

;

.

(1)從上述五個式子中選擇一個,求出常數(shù);

(2)根據(jù)(1)的計算結果,將該同學的發(fā)現(xiàn)推廣為一個三角恒等式,并證明你的結論.

 

【答案】

  

【解析】

試題分析:解:(1)選擇②式計算:.…4分

(2)猜想的三角恒等式為:.………6分

證明:  

 

 

. 12分

考點:類比推理

點評:解決的關鍵是西歐那個已知關系式的特殊的角和結構來推理得到一般式,屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•福建)某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計算結果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在一次研究性學習中發(fā)現(xiàn),以下三個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
請將該同學的發(fā)現(xiàn)推廣為一般規(guī)律的等式
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在一次研究性學習中發(fā)現(xiàn),以下四個不等式都是正確的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
請你觀察這四個不等式:
(Ⅰ)猜想出一個一般性的結論(用字母表示);
(Ⅱ)證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin2(-18°)+cos248°-sin(-18°)cos48°
(I)試從上述三個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結果,將該同學的發(fā)現(xiàn)推廣為一個三角恒等式,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高三上學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).

;

;

.

(1)從上述五個式子中選擇一個,求出常數(shù);

(2)根據(jù)(1)的計算結果,將該同學的發(fā)現(xiàn)推廣為一個三角恒等式,并證明你的結論.

 

查看答案和解析>>

同步練習冊答案