已知||=||=||=2,則|3-2|=________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:044

已知向量p=(a,x+1),q=(x,a),m=(1,y),且(p-q)∥m,y與x的函數(shù)關(guān)系式為y=f(x).

(1)求f(x);

(2)判斷并證明函數(shù)y=f(x)當(dāng)x>a時(shí)的單調(diào)性;

(3)我們利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn),方法如下:對(duì)于f(x)定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.如果取f(x)定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:訓(xùn)練必修三數(shù)學(xué)人教A版 人教A版 題型:013

已知a=3,b=5,c=4,經(jīng)過下面這個(gè)程序運(yùn)行之后其結(jié)果是

INPUT “a,b,c=”;3,5,4

IF b>a THEN

t=a

a=b

b=t

END IF

IF c>a THEN

t=a

a=c

c=t

END IF

IF c>b THEN

t=b

b=c

c=t

END IF

PRINT a,b,c

END

[  ]
A.

a=3,b=5,c=4

B.

a=5,b=4,c=3

C.

a=5,b=3,c=4

D.

a=3,b=4,c=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市2011屆高三第一次診斷性檢測(cè)數(shù)學(xué)文科試題 題型:022

已知非零向量、、、滿足:αβγ(α,β,γ∈R),B、C、D為不共線三點(diǎn),給出下列命題:

①若α,β,γ=-1,則AB、C、D四點(diǎn)在同一平面上;

②若αβγ=?,?|+||+||=1,,>=<,>=,>=,則||=2;

③已知正項(xiàng)等差數(shù)列{an}(n∈N*),若α=a2,β=a2009,γ=0,且A、BC三點(diǎn)共線,但O點(diǎn)不在直線BC上,則的最小值為10;

④若α,β,γ=0,則A、B、C三點(diǎn)共線且A所成的比λ一定為-4

其中你認(rèn)為正確的所有命題的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年本溪縣高三暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,已知△ABC是邊長為1的正三角形,M、N分別是

邊AB、AC上的點(diǎn),線段MN經(jīng)過△ABC的中心G,設(shè)ÐMGA=a(

(1)試將△AGM、△AGN的面積(分別記為S1與S2)表示為a的函數(shù)

(2)求y=的最大值與最小值

          

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知sina=,aÎ(,p),cosb=-,b是第三象限的角.

⑴ 求cos(a-b)的值;

⑵ 求sin(a+b)的值;

⑶ 求tan2a的值.

【解析】第一問中∵ aÎ(,p),∴ cosa=-=-,  ∵ b是第三象限的角,

∴ sinb=-=-,     

cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=- 

⑵ 中sin(a+b)=sina·cosb+cosa·sinb       =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到!遲ana==- ∴tan2a= ==- 

解∵ aÎ(,p),∴ cosa=-=-,         …………1分

∵ b是第三象限的角,∴ sinb=-=-,        ………2分

⑴ cos(a-b)=cosa·cosb+sina·sinb          …………3分

=(-)×(-)+×(-)=-          ………………5分

⑵ sin(a+b)=sina·cosb+cosa·sinb          ……………………6分

×(-)+(-)×(-)=           …………………8分

⑶ ∵tana==-             …………………9分

∴tan2a=             ………………10分

=-

 

查看答案和解析>>

同步練習(xí)冊(cè)答案