1.f(x)是定義在R上的偶函數(shù),其圖象關(guān)于直線x=2對(duì)稱,當(dāng)x∈[-2,2]時(shí),f(x)=-x2+3,則f(-3)=2.

分析 由f(x)是定義在R上的偶函數(shù),其圖象關(guān)于直線x=2對(duì)稱,推理出f(x)是周期函數(shù),且周期為4,從而f(-3)=f(1),由此能求出結(jié)果.

解答 解:∵f(x)是定義在R上的偶函數(shù),∴f(-x)=f(x),
∵其圖象關(guān)于直線x=2對(duì)稱,∴f(4-x)=f(x),
∴f(4-x)=f(-x),
∴f(x)是周期函數(shù),且周期為4,
∴f(-3)=f(1)=-12+3=2.
故答案為:2.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,涉及到函數(shù)的周期性、對(duì)稱性等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.書中將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為“陽(yáng)馬”,若某“陽(yáng)馬”的三視圖如圖所示(單位:cm),則該陽(yáng)馬的外接球的體積為(  )
A.100πcm3B.$\frac{500π}{3}c{m^3}$C.400πcm3D.$\frac{4000π}{3}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+1(a∈R),f(ln(log25))=5,則f(ln(log52))=( 。
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{-4+i}{-i}$的共軛復(fù)數(shù)是( 。
A.-1+4iB.-1-4iC.1+4iD.1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在斜三棱柱ABC-A′B′C′中,AC=BC=A′A=A′C,A′在底面ABC上的射影為AB的中點(diǎn)D,E為線段BC的中點(diǎn).
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求二面角D-B′C-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|-a<x<a},其中a>0,命題p:1∈A,命題q:2∈A,若p∨q為真命題,p∧q為假命題,則a的取值范圍是(  )
A.0<a<1或a>2B.0<a<1或a≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)復(fù)數(shù)z=1-i,則$\frac{-3+4i}{z+1}$=( 。
A.-2+iB.2+iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,A=2B.
(I )若sinB=$\frac{\sqrt{5}}{5}$,求cosC的值;
(II)若C為鈍角,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正項(xiàng)等比數(shù)列{an}中,a1008a1010=$\frac{1}{100}$,則lga1+lga2+…+lga2017=( 。
A.-2016B.-2017C.2016D.2017

查看答案和解析>>

同步練習(xí)冊(cè)答案