如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,
(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數(shù)的解析式及最大值
(1)詳見(jiàn)解析;(2)時(shí),體積有最大值
解析試題分析:(1)因?yàn)樗倪呅蜠CBE為平行四邊形,所以 而易證平面,從而平面,由面面垂直的判定定理可得,平面平面 (2)三棱錐A-CBE的體積即為三棱錐E-ABC的體積,所以,當(dāng)OCAB時(shí)取得最大值,此時(shí)
試題解析:(1)證明:因?yàn)樗倪呅蜠CBE為平行四邊形,所以
平面,平面,
因?yàn)锳B是圓O的直徑,且
平面 又,平面
又平面,所以平面平面 4分
(2)∵ DC平面ABC ∴平面ABC
在Rt△ABE中,,
在Rt△ABC中 ()
∴,
() (8分)
備注:未指明定義域扣1分
∵ 當(dāng)且僅當(dāng),
即時(shí),體積有最大值為 (12分)
考點(diǎn):1、空間直線與平面的位置關(guān)系;2、三棱錐的體積;3、最值問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)A1在底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
(1)證明:平面A1AC⊥平面AB1B;
(2)若點(diǎn)P為B1C1的中點(diǎn),求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)倒圓錐形容器的軸截面為一個(gè)等邊三角形,在此容器內(nèi)注入水,并浸入半徑為的一個(gè)實(shí)心球,使球與水面恰好相切,試求取出球后水面高為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)當(dāng)正視方向與向量的方向相同時(shí),畫(huà)出四棱錐PABCD的正視圖(要求標(biāo)出尺寸,并寫(xiě)出演算過(guò)程);
(2)若M為PA的中點(diǎn),求證:DM∥平面PBC;
(3)求三棱錐DPBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的正視圖是一個(gè)底邊長(zhǎng)為4、腰長(zhǎng)為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,E是以AB為直徑的半圓上異于點(diǎn)A、B的點(diǎn),矩形ABCD所在的平面垂直于該半圓所在的平面,且AB=2AD=2
(1)求證:
(2)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為
①試證:
②若求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在球面上有四個(gè)點(diǎn)P、A、B、C,如果PA、PB、PC兩兩互相垂直,且PA=PB=PC=a,求這個(gè)球的表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com