1.已知集合A={x|(x-a)[x-(a+3)]≤0}(a∈R),B={x|x2-4x-5>0}.
( 1 ) 若A∩B=∅,求實(shí)數(shù)a的取值范圍;
( 2 ) 若A∪B=B,求實(shí)數(shù)a的取值范圍.

分析 (1)先化簡(jiǎn)集合A,B,再根據(jù)A∩B=∅,即可求得a的值.
(2)先求A∪B=B,即A是B的子集,即可求得a的取值范圍.

解答 解:A={x|(x-a)[x-(a+3)]≤0}={x|a≤x≤a+3},B={x|x2-4x-5>0}={x|x<-1或x>5},…(4分)
(1)要使A∩B=∅,則需滿足下列不等式組$\left\{{\begin{array}{l}{a+3≤5}\\{a≥-1}\end{array}}\right.$,解此不等式組得-1≤a≤2,則實(shí)數(shù)a的取值范圍為[-1,2]…(8分)
(2)要使A∪B=B,即A是B的子集,則需滿足a+3<-1或a>5,
解得a>5或a<-4,即a的取值范圍是{a|a>5或a<-4}…(12分)

點(diǎn)評(píng) 本題考查了集合間的關(guān)系和運(yùn)算,深刻理解集合間的關(guān)系和運(yùn)算法則是解決此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=|2x-2|-m有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.本來(lái)住校的小明近期“被”走讀,某天中午上學(xué)路上,一開(kāi)始慢悠悠,中途又進(jìn)甜品店買了杯飲料,喝完飲料出來(lái)發(fā)現(xiàn)快要遲到了,于是一路狂奔,還好,終于在規(guī)定的時(shí)間內(nèi)進(jìn)了校門,奈何汗?jié)窳艘律眩敲磫?wèn)題來(lái)了:若圖中的縱軸表示小明與校門口的距離,橫軸表示出發(fā)后的時(shí)間,下面四個(gè)圖形中,較符合小明這次上學(xué)經(jīng)歷的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖所示,如圖為一個(gè)四棱錐的三視圖,則該四棱錐所有的側(cè)棱中最長(zhǎng)的為$\sqrt{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\frac{lo{g}_{2}(2x-1)}{\sqrt{x+1}}$的定義域是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列給出四組函數(shù),表示同一函數(shù)的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=2x+1,g(x)=2x-1
C.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U={-2,-1,0,1,2},集合A={x∈Z|x2+x-2<0},則∁UA=(  )
A.{-2,1,2}B.{-2,1}C.{1,2}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中正確的有(  )
①命題?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“對(duì)?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點(diǎn)的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知x>1,求f(x)=x+$\frac{1}{x-1}$最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案