14.在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,36,45,55,…這些數(shù)叫做三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成正三角形(如圖所示),則三角形數(shù)的一般表達(dá)式f(n)=$\frac{n(n+1)}{2}$.

分析 通過(guò)觀察前幾個(gè)圖形中頂點(diǎn)的個(gè)數(shù)得,每一個(gè)圖形中的頂點(diǎn)的個(gè)數(shù)都可以看成是一個(gè)等差數(shù)列的前幾項(xiàng)的和,再利用等差數(shù)列的求和公式即可解決問(wèn)題.

解答 解:根據(jù)規(guī)律性知:
由1+2+3+…+n=$\frac{n(n+1)}{2}$可得三角形數(shù)的一般表達(dá)式f(n).
故答案為:$\frac{n(n+1)}{2}$.

點(diǎn)評(píng) 本題主要考查了歸納推理,以及數(shù)列遞推式,屬于基礎(chǔ)題.所謂歸納推理,就是從個(gè)別性知識(shí)推出一般性結(jié)論的推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=2sinωx在區(qū)間$[-\frac{π}{4},\frac{π}{3}]$上的最小值為-2,則ω的取值范圍是( 。
A.$(-∞,-2]∪[\frac{3}{2},+∞)$B.$(-∞,-\frac{3}{2}]∪[2,+∞)$C.$(-∞,-\frac{9}{2}]∪[6,+∞)$D.$(-∞,-6]∪[\frac{9}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)m∈R,過(guò)定點(diǎn)A的動(dòng)直線(xiàn)x+my=0和過(guò)定點(diǎn)B的動(dòng)直線(xiàn)mx-y-m+3=0交于點(diǎn)P,若AB的中點(diǎn)為C,則|PC|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax+1
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)方程f(x)=0有三個(gè)不同的解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是(  )
A.小于90°的角是銳角B.鈍角是第二象限的角
C.第二象限的角大于第一象限的角D.若角α與角β的終邊相同,那么α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.直線(xiàn)$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積S.
(2)若b+c=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{5}{7}$.
(1)求tan($\frac{π}{2}$-α)的值;
(2)求3cosα•sin(α+π)+2cos2(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={a,a2},B={1,b},若A=B,則a+b=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案