【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),曲線C: (α為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系,直線l:ρ.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)曲線C上恰好存在三個(gè)不同的點(diǎn)到直線l的距離相等,分別求出這三個(gè)點(diǎn)的極坐標(biāo).
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】試題分析: (1)消去參數(shù)α,即可得到曲線C的普通方程,利用極坐標(biāo)與直角坐標(biāo)互化求出直線l的直角坐標(biāo)方程;
(2)求出圓的圓心與半徑,求出三個(gè)點(diǎn)的坐標(biāo),然后求解極坐標(biāo).
試題解析:
(Ⅰ)曲線,
可得:
曲線C的普通方程:x2+y2=4.
直線l:ρsin=1=ρsin θ+ρcos θ,
直線l的直角坐標(biāo)方程:x+y-2=0.
(Ⅱ)∵圓C的圓心(0,0)半徑為2,,圓心C到直線的距離為1,
∴這三個(gè)點(diǎn)在平行直線l1與 l2上,如圖:直線l1與 l2與l的距離為1.
l1:x+y=0,l2:x+y-4=0.
,可得
兩個(gè)交點(diǎn)(-,1)、(,-1);
解得(1,),
這三個(gè)點(diǎn)的極坐標(biāo)分別為:、、.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與點(diǎn)的軌跡交于不同的四個(gè)點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個(gè)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).
(1)若在區(qū)間上的最大值為,求的值;
(2)當(dāng)時(shí),判斷方程是否有實(shí)根?若無實(shí)根請說明理由,若有實(shí)根請給出根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米,圓心角為(弧度)的扇形觀景水池,其中, 為扇形的圓心,同時(shí)緊貼水池周邊(即: 和所對的圓弧)建設(shè)一圈理想的無寬度步道.要求總預(yù)算費(fèi)用不超過24萬元,水池造價(jià)為每平方米400元,步道造價(jià)為每米1000元.
(1)若總費(fèi)用恰好為24萬元,則當(dāng)和分別為多少時(shí),可使得水池面積最大,并求出最大面積;
(2)若要求步道長為105米,則可設(shè)計(jì)出的水池最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為(, 為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸, 軸交于點(diǎn), (, 不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線: 與曲線交于不同的兩點(diǎn), ,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-f′(0)ex+2x,點(diǎn)P為曲線y=f(x)在點(diǎn)(0,f(0))處的切線l上的一點(diǎn),點(diǎn)Q在曲線y=ex上,則|PQ|的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com