已知函數(shù),函數(shù)
⑴當時,求函數(shù)的表達式;
⑵若,函數(shù)上的最小值是2 ,求的值;
(3)⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

⑴當時,函數(shù)

(3)

解析試題分析:(1)對x的取值分類討論,化簡絕對值,求出得到導(dǎo)函數(shù)相等,代入到中得到即可;
(2)根據(jù)基本不等式得到的最小值即可求出
(3)根據(jù)(2)知先聯(lián)立直線與函數(shù)解析式求出交點,利用定積分求直線和函數(shù)圖象圍成面積的方法求出即可.
⑴∵,
∴當時,; 當時,
∴當時,; 當時,
∴當時,函數(shù)
⑵∵由⑴知當時,,
∴當時, 當且僅當時取等號.
∴函數(shù)上的最小值是,∴依題意得
⑶由解得
∴直線與函數(shù)的圖象所圍成圖形的面積
=
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,基本不等式,利用定積分求封閉圖形的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(1) 當時,求函數(shù)的單調(diào)區(qū)間;
(2) 當時,求函數(shù)上的最小值和最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)R),為其導(dǎo)函數(shù),且有極小值
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當時,對于任意x,的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足如下條件:當時,,且對任
,都有.
(1)求函數(shù)的圖象在點處的切線方程;
(2)求當,時,函數(shù)的解析式;
(3)是否存在,、、、,使得等式
成立?若存在就求出、、、),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),不等式恒成立,求實數(shù)的取值范圍.    [來源:學(xué)科

查看答案和解析>>

同步練習(xí)冊答案